Những câu hỏi liên quan
NT
Xem chi tiết
NM
22 tháng 8 2017 lúc 16:16

Đặt \(\sqrt{x^2+7x+8}=a\) thì ta có

\(a^2+a-20=0\)

\(\Leftrightarrow\orbr{\begin{cases}a=-5\left(l\right)\\a=4\end{cases}}\)

\(\Leftrightarrow\sqrt{x^2+7x+8}=4\)

\(\Leftrightarrow x^2+7x-8=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=-8\\x=1\end{cases}}\)

Bình luận (0)
LD
19 tháng 10 2020 lúc 21:44

\(x^2+7x+\sqrt{x^2+7x+8}=12\)

ĐK : \(x^2+7x+8\ge0\Leftrightarrow\orbr{\begin{cases}x\le\frac{-7-\sqrt{17}}{2}\\x\ge\frac{-7+\sqrt{17}}{2}\end{cases}}\)

Đặt \(t=x^2+7x\)

pt \(\Leftrightarrow t+\sqrt{t+8}=12\)

\(\Leftrightarrow\sqrt{t+8}=12-t\)\(-8\le t\le12\))

Bình phương hai vế

\(\Leftrightarrow t+8=144-24t+t^2\)

\(\Leftrightarrow t^2-24t+144-t-8=0\)

\(\Leftrightarrow t^2-25t+136=0\)(*)

\(\Delta=b^2-4ac=\left(-25\right)^2-4\cdot136=625-544=81\)

\(\Delta>0\)nên (*) có hai nghiệm phân biệt

\(\hept{\begin{cases}t_1=\frac{-b+\sqrt{\Delta}}{2a}=\frac{25+\sqrt{81}}{2}=\frac{34}{2}=17\left(loai\right)\\t_2=\frac{-b-\sqrt{\Delta}}{2a}=\frac{25-\sqrt{81}}{2}=\frac{16}{2}=8\left(nhan\right)\end{cases}}\)

\(\Rightarrow x^2+7x=8\)

\(\Rightarrow x^2+7x-8=0\)

\(\Rightarrow x^2-x+8x-8=0\)

\(\Rightarrow x\left(x-1\right)+8\left(x-1\right)=0\)

\(\Rightarrow\left(x-1\right)\left(x+8\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x=1\\x=-8\end{cases}\left(tm\right)}\)

Vậy phương trình có hai nghiệm \(\hept{\begin{cases}x_1=1\\x_2=-8\end{cases}}\)

Bình luận (0)
 Khách vãng lai đã xóa
DH
22 tháng 8 2017 lúc 16:14

\(ĐKXĐ:x^2+7x+8\ge0\Leftrightarrow\hept{\begin{cases}x\le\frac{-7-\sqrt{17}}{2}\\x\ge\frac{-7+\sqrt{17}}{2}\end{cases}}\)

Đặt \(x^2+7x=a\) nên

\(pt\Leftrightarrow a+\sqrt{a+8}=12\Leftrightarrow\sqrt{a+8}=12-a\)

\(\Leftrightarrow a+8=\left(12-a\right)^2=a^2-24a+144\)

\(\Leftrightarrow a^2-24a+144-a-8=0\)

\(\Leftrightarrow a^2-25a+136=0\)

\(\Leftrightarrow a^2-8a-17a+136=0\)

\(\Leftrightarrow a\left(a-8\right)-17\left(a-8\right)=0\)

\(\Leftrightarrow\left(a-17\right)\left(a-8\right)=0\Rightarrow\orbr{\begin{cases}a=17\\a=8\end{cases}}\)

Đến đây dễ rồi; lm

Bình luận (0)
QL
Xem chi tiết
HM
26 tháng 9 2023 lúc 23:26

a) \(\sqrt {{x^2} - 7x}  = \sqrt { - 9{x^2} - 8x + 3} \)

\(\begin{array}{l} \Rightarrow {x^2} - 7x =  - 9{x^2} - 8x + 3\\ \Rightarrow 10{x^2} + x - 3 = 0\end{array}\)

\( \Rightarrow x =  - \frac{3}{5}\) và \(x = \frac{1}{2}\)

Thay hai nghiệm vừa tìm được vào phương trình \(\sqrt {{x^2} - 7x}  = \sqrt { - 9{x^2} - 8x + 3} \) thì ta thấy chỉ có nghiệm \(x =  - \frac{3}{5}\) thỏa mãn phương trình

Vậy nghiệm của phương trình là \(x =  - \frac{3}{5}\)

b) \(\sqrt {{x^2} + x + 8}  - \sqrt {{x^2} + 4x + 1}  = 0\)

\(\begin{array}{l} \Rightarrow \sqrt {{x^2} + x + 8}  = \sqrt {{x^2} + 4x + 1} \\ \Rightarrow {x^2} + x + 8 = {x^2} + 4x + 1\\ \Rightarrow 3x = 7\\ \Rightarrow x = \frac{7}{3}\end{array}\)

Thay \(x = \frac{7}{3}\) vào phương trình \(\sqrt {{x^2} + x + 8}  - \sqrt {{x^2} + 4x + 1}  = 0\) ta thấy thỏa mãn phương trình

Vậy nghiệm của phương trình đã cho là \(x = \frac{7}{3}\)

c) \(\sqrt {4{x^2} + x - 1}  = x + 1\)

\(\begin{array}{l} \Rightarrow 4{x^2} + x - 1 = {\left( {x + 1} \right)^2}\\ \Rightarrow 4{x^2} + x - 1 = {x^2} + 2x + 1\\ \Rightarrow 3{x^2} - x - 2 = 0\end{array}\)

\( \Rightarrow x =  - \frac{2}{3}\) và \(x = 1\)

Thay hai nghiệm trên vào phương trình \(\sqrt {4{x^2} + x - 1}  = x + 1\) ta thấy cả hai nghiệm đều thỏa mãn

Vậy nghiệm của phương trình trên là \(x =  - \frac{2}{3}\) và \(x = 1\)

d) \(\sqrt {2{x^2} - 10x - 29}  = \sqrt {x - 8} \)

\(\begin{array}{l} \Rightarrow 2{x^2} - 10x - 29 = x - 8\\ \Rightarrow 2{x^2} - 11x - 21 = 0\end{array}\)

\( \Rightarrow x =  - \frac{3}{2}\) và \(x = 7\)

Thay hai nghiệm \(x =  - \frac{3}{2}\) và \(x = 7\) vào phương trình  \(\sqrt {2{x^2} - 10x - 29}  = \sqrt {x - 8} \) ta thấy cả hai đều không thảo mãn phương trình

Vậy phương trình \(\sqrt {2{x^2} - 10x - 29}  = \sqrt {x - 8} \) vô nghiệm

Bình luận (0)
NT
Xem chi tiết
TN
Xem chi tiết
H24
19 tháng 5 2018 lúc 20:15

Đặt:

\(a=\sqrt[3]{x^2-x-8};b=\sqrt[3]{x^2-8x-1}\)

Để ý thấy rằng: \(a^3-b^3=7x-7=\left(7x+1\right)+8\)nên PT trở thành:

\(b-a+\sqrt[3]{a^3-b^3+8}=2\)

\(\Leftrightarrow a^3-b^3+8=\left(2+a-b\right)^3\)

\(\Leftrightarrow\left(a-b\right)\left(a^2+b^2+ab\right)=\left(a-b\right)^3+6\left(a-b\right)\left[2+\left(a-b\right)\right]\)

\(\Leftrightarrow\orbr{\begin{cases}a-b=0\\\left(a-b\right)^2+3ab=\left(a-b\right)^2+12+6\left(a-b\right)\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}a=b\\\left(a+2\right)\left(2-b\right)=0\end{cases}}\Leftrightarrow\hept{\begin{cases}a=b\\a=-2\\b=2\end{cases}}\)

\(\left(+\right)a=b\Leftrightarrow x^2-x-8=x^2-8x-1\Leftrightarrow x=1\)

\(\left(+\right)a=-2\Leftrightarrow x^2-x-8=-8\Leftrightarrow\orbr{\begin{cases}a=0\\x=1\end{cases}}\)

\(\left(+\right)b=2\Leftrightarrow x^2-8x-1=8\Leftrightarrow\orbr{\begin{cases}x=8\\x=-1\end{cases}}\)

\(\Rightarrow x\in\left\{\pm1;0;9\right\}\)

Bình luận (0)
NK
Xem chi tiết
TN
23 tháng 8 2017 lúc 20:48

\(\sqrt[3]{7x-8}+5\sqrt{x-1}=x\sqrt{2x-1}-2\)

\(\Leftrightarrow\sqrt[3]{7x-8}-3+5\sqrt{x-1}-10=x\sqrt{2x-1}-15\)

\(\Leftrightarrow\frac{7x-8-27}{\sqrt[3]{7x-8}^2+3\sqrt[3]{7x-8}+9}+5\frac{x-1-4}{\sqrt{x-1}-2}-\frac{x^2\left(2x-1\right)-225}{x\sqrt{2x-1}+15}=0\)

\(\Leftrightarrow\frac{7\left(x-5\right)}{\sqrt[3]{7x-8}^2+3\sqrt[3]{7x-8}+9}+5\frac{x-5}{\sqrt{x-1}-2}-\frac{\left(x-5\right)\left(2x^2+9x+45\right)}{x\sqrt{2x-1}+15}=0\)

\(\Leftrightarrow\left(x-5\right)\left(\frac{7}{\sqrt[3]{7x-8}^2+3\sqrt[3]{7x-8}+9}+\frac{5}{\sqrt{x-1}-2}-\frac{2x^2+9x+45}{x\sqrt{2x-1}+15}\right)=0\)

Suy ra x=5

Bình luận (0)
NK
23 tháng 8 2017 lúc 21:22

Bài này có 2 nghiệm là x = 1 và x = 5 nhưng không biết giải thế nào. 

Bình luận (0)
NK
24 tháng 8 2017 lúc 17:23

\(\sqrt[3]{7x-8}+5\sqrt{x-1}=x\sqrt{2x-1}-2\)\(\Leftrightarrow\left[\sqrt[3]{7x-8}-\left(x-2\right)\right]+5\left(\sqrt{x-1}-\frac{x-1}{2}\right)+x\left(\frac{x+1}{2}-\sqrt{2x-1}\right)\)\(+\left(x-2\right)-\frac{x\left(x+1\right)}{2}+\frac{5}{2}\left(x-1\right)+2\)

\(\Leftrightarrow2\left[\sqrt[3]{7x-8}-\left(x-2\right)\right]+x\left(x+1-2\sqrt{2x-1}\right)+\)\(5\left[2\sqrt{x-1}-\left(x-1\right)\right]-x^2+6x-5=0\)

\(\Leftrightarrow2\left[\left(x-2\right)-\sqrt[3]{7x-8}\right]+x\left[2\sqrt{2x-1}-\left(x-1\right)\right]+\)\(5\sqrt{x-1}\left(\sqrt{x-1}-2\right)+x^2-6x+5=0\)

\(\Leftrightarrow\left(x-5\right)\sqrt{x-1}\left[\frac{2x\sqrt{x-1}}{A}+\frac{-x\sqrt{x-1}}{2\sqrt{2x-1}+x+1}+\frac{5}{\sqrt{x-1}+2}+\sqrt{x-1}\right]=0\)

\(\Leftrightarrow\left(x-5\right)\sqrt{x-1}=0\Leftrightarrow\orbr{\begin{cases}x=5\\x=1\end{cases}}\).

Bình luận (0)
CD
Xem chi tiết
MA
14 tháng 10 2019 lúc 21:16

a,\(x^2-7x+\sqrt{x^2-7x+8}=12\)

ĐKXĐ: .....

Đặt \(x^2-7x=t\)

Phương trình trở thành

\(t+\sqrt{t+8}=12\)

\(\Leftrightarrow\sqrt{t+8}=12-t\)

\(\Leftrightarrow t+8=\left(12-t\right)^2\)

\(\Leftrightarrow t+8=144-24t+t^2\)

\(\Leftrightarrow t^2-25t+136=0\)

\(\Leftrightarrow\left(t-17\right)\left(t-8\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}t-17=0\\t-8=0\end{cases}\Leftrightarrow\orbr{\begin{cases}t=17\\t=8\end{cases}}}\)

tại t = 17 , ta có

\(x^2-7x=17\Leftrightarrow x^2-7x-17=0\)

\(\Leftrightarrow.......\)

Tại t = 8 ta có

\(x^2-7x=8\Leftrightarrow x^2-7x-8=0\)

\(\Leftrightarrow\left(x-8\right)\left(x+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-8=0\\x+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=8\\x=-1\end{cases}}}\)

b, \(x^2+4x+5=2\sqrt{2x+3}\)

mik ko bt :)

Bình luận (0)
DT
14 tháng 10 2019 lúc 21:44

a,đkxđ:\(x^2-7x+8\ge0\Leftrightarrow x^2-2\cdot\frac{7}{2}x+\frac{49}{4}-\frac{17}{4}\ge0\Leftrightarrow\left(x-\frac{7}{2}\right)^2\ge\frac{17}{4}\Leftrightarrow\hept{\begin{cases}x-\frac{7}{2}\ge\frac{\sqrt{17}}{2}\approx2,06\\x-\frac{7}{2}\le-\frac{\sqrt{17}}{2}\approx-2,06\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge5,56\\x\le1,44\end{cases}}\)

\(\Leftrightarrow\left(x^2-7x+8\right)+\sqrt{x^2-7x+8}=12+8=20\)

\(\Leftrightarrow4\left(x^2-7x+8\right)+4\sqrt{x^2-7x+8}+1=20\cdot4+1=81\)

\(\Leftrightarrow\left(2\sqrt{x^2-7x+8}+1\right)^2=81\)

\(\Leftrightarrow2\sqrt{x^2-7x+8}+1=\pm9\)

Mà vế trái >0 nên \(2\sqrt{x^2-7x+8}+1=9\)

\(\Leftrightarrow\sqrt{x^2-7x+8}=\frac{9-1}{2}=4\)

\(\Leftrightarrow x^2-7x+8=16\)

\(\Leftrightarrow x^2-7x-8=0\Leftrightarrow\left(x-8\right)\left(x+1\right)=0\Leftrightarrow\orbr{\begin{cases}x=8\\x=-1\end{cases}}\)

Bình luận (0)
PP
Xem chi tiết
NV
Xem chi tiết
AH
29 tháng 4 2023 lúc 16:10

Bài 1: ĐKXĐ: $2\leq x\leq 4$
PT $\Leftrightarrow (\sqrt{x-2}+\sqrt{4-x})^2=2$

$\Leftrightarrow 2+2\sqrt{(x-2)(4-x)}=2$
$\Leftrightarrow (x-2)(4-x)=0$

$\Leftrightarrow x-2=0$ hoặc $4-x=0$

$\Leftrightarrow x=2$ hoặc $x=4$ (tm)

Bình luận (0)
AH
29 tháng 4 2023 lúc 16:47

Bài 2:
PT $\Leftrightarrow 4x^3(x-1)-3x^2(x-1)+6x(x-1)-4(x-1)=0$

$\Leftrightarrow (x-1)(4x^3-3x^2+6x-4)=0$
$\Leftrightarrow x=1$ hoặc $4x^3-3x^2+6x-4=0$

Với $4x^3-3x^2+6x-4=0(*)$

Đặt $x=t+\frac{1}{4}$ thì pt $(*)$ trở thành:
$4t^3+\frac{21}{4}t-\frac{21}{8}=0$

Đặt $t=m-\frac{7}{16m}$ thì pt trở thành:

$4m^3-\frac{343}{1024m^3}-\frac{21}{8}=0$
$\Leftrightarrow 4096m^6-2688m^3-343=0$

Coi đây là pt bậc 2 ẩn $m^3$ và giải ta thu được \(m=\frac{\sqrt[3]{49}}{4}\) hoặc \(m=\frac{-\sqrt[3]{7}}{4}\)

Khi đó ta thu được \(x=\frac{1}{4}(1-\sqrt[3]{7}+\sqrt[3]{49})\)

 

Bình luận (0)
NV
29 tháng 4 2023 lúc 17:11

Nãy mình tìm được một cách giải tương tự cho câu 2.

PT \(\Leftrightarrow\left(x-1\right)\left(4x^3-3x^2+6x-4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\4x^3-3x^2+6x-4=0\left(1\right)\end{matrix}\right.\)

Vậy pt có 1 nghiệm bằng 1.

\(\left(1\right)\Rightarrow8x^3-6x^2+12x-8=0\)

\(\Leftrightarrow7x^3+x^3-6x^2+12x-8=0\)

\(\Leftrightarrow\left(x-2\right)^3=-7x^3\)

\(\Leftrightarrow x-2=-\sqrt[3]{7}x\)

\(\Leftrightarrow x=\dfrac{2}{1+\sqrt[3]{7}}\)

Vậy pt có nghiệm \(S=\left\{1;\dfrac{2}{1+\sqrt[3]{7}}\right\}\)

Lưu ý: Nghiệm của người kia hoàn toàn tương đồng với nghiệm của mình (\(\dfrac{2}{1+\sqrt[3]{7}}=\dfrac{1}{4}\left(1-\sqrt[3]{7}+\sqrt[3]{49}\right)\))

Bình luận (0)
YT
Xem chi tiết
KN
15 tháng 4 2020 lúc 8:45

\(ĐK:x\ge-8\)

\(\left(4x+2\right)\sqrt{x+8}=3x^2+7x+8\)

\(\Leftrightarrow x+8-3x\sqrt{x+8}-\left(x+2\right)\sqrt{x+8}+3x\left(x+2\right)=0\)

\(\Leftrightarrow\sqrt{x+8}\left(\sqrt{x+8}-3x\right)-\left(x+2\right)\left(\sqrt{x+8}-3x\right)=0\)

\(\Leftrightarrow\left(\sqrt{x+8}-x-2\right)\left(\sqrt{x+8}-3x\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x+8}=x+2\left(1\right)\\\sqrt{x+8}=3x\left(2\right)\end{cases}}\)

\(\left(1\right)\Leftrightarrow x+8=x^2+4x+4\Leftrightarrow x^2+3x-4=0\Leftrightarrow\orbr{\begin{cases}x=1\left(tm\right)\\x=-4\left(L\right)\end{cases}}\)

\(\left(2\right)\Leftrightarrow9x^2-x-8=0\Leftrightarrow\orbr{\begin{cases}x=1\left(tm\right)\\x=\frac{-8}{9}\left(L\right)\end{cases}}\)

Vậy nghiệm duy nhất của phương trình là 1

Bình luận (0)
 Khách vãng lai đã xóa
TD
15 tháng 4 2020 lúc 8:50

ĐKXĐ : x \(\ge\)-8

PT đã cho tương đương với :

\(2\left(2x+1\right)\sqrt{x+8}=4x^2+4x+1+x+8-\left(x^2-2x+1\right)\)

\(\Leftrightarrow\left(2x+1\right)^2-2\left(2x+1\right)\sqrt{x+8}+x+8-\left(x-1\right)^2=0\)

\(\Leftrightarrow\left(2x+1-\sqrt{x+8}\right)^2-\left(x-1\right)^2=0\)

\(\Leftrightarrow\left(x+2-\sqrt{x+8}\right)\left(3x-\sqrt{x+8}\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+2-\sqrt{x+8}=0\\3x-\sqrt{x+8}=0\end{cases}}\)

Từ đó giải ra x = 1 thỏa mãn đề bài

Bình luận (0)
 Khách vãng lai đã xóa
NA
15 tháng 4 2020 lúc 8:45

giúp mình giải câu đấy nữa

Bình luận (0)
 Khách vãng lai đã xóa
TN
Xem chi tiết
NT
19 tháng 5 2018 lúc 16:05

Các bạn học sinh ĐƯỢC đăng các câu hỏi không liên quan đến Toán, hoặc các bài toán linh tinh gây nhiễu diễn đàn. Online Math không thể áp dụng các biện pháp như trừ điểm, thậm chí mở vĩnh viễn tài khoản của bạn nếu vi phạm nội quy nhiều lần

Bình luận (0)