Chứng tỏ rằng : 5!+6!+7!+...+100! chia hết cho 10
Bài 1 : Chứng tỏ rằng :
a) 10 mũ 9 + 10 mũ 8 + 10 mũ 7 chia hết cho 555
b) 81 mũ 7 - 27 mũ 9 - 9 mũ 19 chia hết cho 45
Bài 2 : Chứng tỏ rằng :
A = 5 + 5 mũ 5 + 5 mũ 3 + ... +5 mũ 99 + 5 mũ 100 chia hết cho 6
Mấy bạn giúp mk với gấp lắm !
a;
A = 109 + 108 + 107
A = 107.(102 + 10 + 1)
A = 106.2.5.(100 + 10 + 1)
A = 106.2.5.111
A = 106.2.555 ⋮ 555 (đpcm)
b;
B = 817 - 279 - 919
B = 914 - 39.99 - 919
B = 914 - 3.38.99 - 919
B = 914 - 3.94.99 - 919
B = 914 - 3.913 - 919
B = 913.(9 - 3 - 96)
B = 913.(9 - 3 - \(\overline{..1}\))
B = 913.(6 - \(\overline{..1}\))
B = 913.\(\overline{..5}\)
B ⋮ 9; B ⋮ 5
B \(\in\) BC(9; 5) = 9.5 = 45
B ⋮ 45 (đpcm)
Bài 2:
A = 5 + 52 + 53 + ... + 599 + 5100 chứ em?
Chứng tỏ rằng:
a) 6^100 - 1 chia hết cho 5
b) 21^10 - 11^10 chia hết cho 2 và 5
Chứng tỏ rằng:
a) 6^100 - 1 chia hết cho 5
b) 21^10 - 11^10 chia hết cho 2 và 5
a,Chứng tỏ rằng : 5!+6!+7!+...+100! chia hết cho 10
b,Tìm chữ số tận cùng của dãy : 1!+2!+....+2002!
1.Chứng tỏ rằng:
a.6^100-1 chia hết cho 5
b.21^10-11^10 chia hết cho 2 và 5
6^100-1 =......6-1=......0 chia hết cho 5
21^10-11^10=.....1-.......1=......0 chia hết cho 10
Chứng tỏ rằng:
A)10^9+2 chia hết cho 3
B)10^10-1 chia hết cho 9
C)6^100-1 chia hết cho 5
D)21^20-11^10 chia hết cho 2 và 5
a/ 109 =100000...0 (9 chữ số 0) => 109 +2 = 100000..0002 (8 chữ số 0)
Tổng các chữ số =1+2=3 => 109 +2 chia hết cho 3
b/ 1010 = 100000..000 (10chữ số 0) => 1010 - 1 = 9999...9999 (10 chữ số 9)
Tổng các chữ số là 10x9=90 => chia hết cho 9
c/ và d/ cũng tương tự
Chứng tỏ rằng:
a) 6100-1 chia hết cho 5
b) 2120-1110chia hết cho 10
chứng tỏ rằng
1)5^5-5^4+5^3 chia hết cho 7
2)10^6-5^7 chia hết cho 59
3)81^7-27^9-9^13 chia hết cho 45
chứng tỏ rằng:
6100-1 chia hết cho 5
2120 - 2110 chia hết cho 2 và 5