Những câu hỏi liên quan
PP
Xem chi tiết
HT
23 tháng 2 2016 lúc 17:59

Gia su aabb = n2

<=> a.103+a.102+b.10+b=n2

<=> 11(100a+b)=n2

=> n2​ chia hết cho 11

=> n chia hết cho 11

Do n2 co 4 chu so nen 32<n<100

=> n=33 ; n=44; ....n=99

Thử vào thì n=88 là thỏa mãn

vậy A=7744

Bình luận (0)
H24
Xem chi tiết
PU
9 tháng 3 2016 lúc 20:19

7744 chính xác luôn cô giáo mình sửa rùi 

nếu giải ra fai xét t/h dài lắm bn à (mà toán lớp 6 mà)

Bình luận (0)
VT
Xem chi tiết
IM
19 tháng 7 2016 lúc 9:18

Gọi số cần tìm là \(\overline{aabb}=n^2\)

(\(1\le a\le9;0\le b\le9;a,b\in n\))

Ta có

\(n^2=11\left(100a+b\right)=11\left(99a+a+b\right)\left(1\right)\)

Xét thấy \(\overline{aabb}\) chia hết cho 11

 => a+b chia hết cho 11

Mà \(1\le a+b\le18\)

=> a+b=11 (2)

Thay (2) vào (1) ta có

\(n^2=11^2\left(9a+1\right)\)

=> 9a+1 phải là số chính phương

Thử a=1;2;3;....;9 ta thấy chỉ có 7 thỏa mãn vì 9x7+1=64=82

=>b=4

Vậy số cần tìm là 7744

 

 

Bình luận (0)
NN
19 tháng 7 2016 lúc 9:13

Giả sử aabb=n^2 
<=>a.10^3+a.10^2+b.10+b=n^2 
<=>11(100a+b)=n^2 
=>n^2 chia hết cho 11 
=>n chia hết cho 11 
do n^2 có 4 chữ số nên 
32<n<100 
=>n=33,n=44,n=55,...n=99 
thử vào thì n=88 là thỏa mãn 
vậy số đó là 7744

Bình luận (0)
H24
7 tháng 3 2017 lúc 10:51

Thử quá nhiều--> mệt quá đi

\(\overline{aabb}=11.\left(100a+b\right)=n^2\)

\(\)\(1000\le\overline{aabb}\le9999\Rightarrow33\le n\le99\)

b phải là số chẵn do số cp không có tận cùng hai số lẻ.

vậy n phải chẵn; n số chẵn chia hết cho 11 => n chia hết cho 22

n={44,66,88}

Thử vào có: 88^2=7744 phù hợp

Vậy: số đó là 7744

Bình luận (0)
NL
Xem chi tiết
NT
28 tháng 2 2016 lúc 9:52

bai do bang 7744 ban nhe

Bình luận (0)
OO
Xem chi tiết
NT
Xem chi tiết
LD
23 tháng 2 2016 lúc 21:25

.+giả sử aabb=n^2 
<=>a.10^3+a.10^2+b.10+b=n^2 
<=>11(100a+b)=n^2 
=>n^2 chia hết cho 11 
=>n chia hết cho 11 
do n^2 có 4 chữ số nên 
32<n<100 
=>n=33,n=44,n=55,...n=99 
thử vào thì n=88 là thỏa mãn 
vậy số đó là 7744

Bình luận (0)
NT
23 tháng 2 2016 lúc 21:32

Còn cách nào khác không anh

Bình luận (0)
NT
Xem chi tiết
DT
Xem chi tiết
NT
Xem chi tiết