Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
HT
Xem chi tiết
BC
Xem chi tiết
AH
29 tháng 10 2024 lúc 23:44

Lời giải:

Đặt $\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk; c=dk$. Khi đó:

$\frac{7a^2+3ab}{11a^2-8b^2}=\frac{7(bk)^2+3bk.b}{11(bk)^2-8b^2}$

$=\frac{b^2(7k^2+3k)}{b^2(11k^2-8)}=\frac{7k^2+3k}{11k^2-8}(1)$
Và:

$\frac{7c^2+3cd}{11c^2-8d^2}=\frac{7(dk)^2+3dk.d}{11(dk)^2-8d^2}$

$=\frac{d^2(7k^2+3k)}{d^2(11k^2-8)}=\frac{7k^2+3k}{11k^2-8}(2)$

Từ $(1); (2)$ ta có đpcm. 

Bình luận (0)
CD
Xem chi tiết
NT
29 tháng 8 2022 lúc 8:49

Đặt a/b=c/d=k

=>a=bk; c=dk

\(\dfrac{7a^2+3ab}{11a^2-8b^2}=\dfrac{7b^2k^2+3\cdot bk\cdot b}{11\cdot b^2k^2-8b^2}=\dfrac{7b^2k^2+3b^2k}{11b^2k^2-8b^2}=\dfrac{7k^2+3k}{11k^2-8}\)

\(\dfrac{7c^2+3cd}{11c^2-8d^2}=\dfrac{7d^2k^2+3\cdot dk\cdot d}{11d^2k^2-8d^2}=\dfrac{7k^2+3k}{11k^2-8}\)

Do đó: \(\dfrac{7a^2+3ab}{11a^2-8b^2}=\dfrac{7c^2+3cd}{11c^2-8d^2}\)

Bình luận (0)
C2
Xem chi tiết
LH
27 tháng 12 2019 lúc 19:17

cc yêu cl

Bình luận (0)
 Khách vãng lai đã xóa
Xem chi tiết
OY
8 tháng 12 2021 lúc 15:21

Tham khảo

Bình luận (1)
LT
Xem chi tiết
NM
7 tháng 11 2021 lúc 10:39

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow a=bk;c=dk\)

\(\dfrac{7a^2+3ab}{11a^2-8b^2}=\dfrac{7b^2k^2+3b^2k}{11b^2k^2-8b^2}=\dfrac{b^2\left(7k^2+3k\right)}{b^2\left(11k^2-8\right)}=\dfrac{7k^2+3k}{11k^2-8}\left(1\right)\)

\(\dfrac{7c^2+3cd}{11c^2-8d^2}=\dfrac{7d^2k^2+3d^2k}{11d^2k^2-8d^2}=\dfrac{d^2\left(7k^2+3k\right)}{d^2\left(11k^2-8\right)}=\dfrac{7k^2+3k}{11k^2-8}\left(2\right)\)

\(\left(1\right)\left(2\right)\RightarrowĐpcm\)

Bình luận (0)
H24
Xem chi tiết
C1
Xem chi tiết
TS
5 tháng 6 2016 lúc 7:53

Cùng thêm vào cả tử số và mẫu số một số đơn vị thì hiệu vẫn không đổi.
Hiệu của tử số và mẫu số là:   92 – 67 = 25
Hiệu số phần bằng nhau:   4 – 3 = 1 (phần)
Tử số của phân số mới là:   25 : 1 x 3 = 75
Số cần thêm vào là;  75 – 67 = 8
ĐS: 8
 

Bình luận (0)
FT
5 tháng 6 2016 lúc 8:06

sai bet te nhe hi hi 

Bình luận (0)
TN
5 tháng 6 2016 lúc 10:44

Từ \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a^2}{c^2}=\frac{a}{c}.\frac{b}{d}=\frac{ab}{cd}\)

\(\Rightarrow\frac{7a^2}{7c^2}=\frac{3ab}{3cd}=\frac{7a^2+3ab}{7c^2+3cd}\Rightarrow\frac{a^2}{c^2}=\frac{7a^2+3ab}{7c^2+3cd}\left(1\right)\)

Mặt khác,\(\frac{a^2}{c^2}=\frac{b^2}{d^2}\Rightarrow\frac{11a^2}{11c^2}=\frac{8b^2}{8d^2}=\frac{11a^2-8b^2}{11c^2-8d^2}\)

\(\Rightarrow\frac{a^2}{c^2}=\frac{11a^2-8b^2}{11c^2-8d^2}\left(2\right)\)

Từ (1) và (2)

\(\Rightarrow\frac{7a^2+3ab}{7c^2+3cd}=\frac{11a^2-8b^2}{11c^2-8d^2}\Rightarrow\frac{7a^2+3ab}{11a^2-8b^2}=\text{ }\frac{7c^2+3ca}{11c^2-8d^2}\)

Bình luận (0)
H24
Xem chi tiết
NH
9 tháng 7 2023 lúc 11:31

Cho \(\dfrac{a}{b}\) như thế nào thì mới chứng minh được chứ em

Bình luận (0)
H24
9 tháng 7 2023 lúc 15:57

cho a/b =c/d nha

 

Bình luận (0)