Những câu hỏi liên quan
DS
Xem chi tiết
NN
Xem chi tiết
LP
19 tháng 6 2023 lúc 22:18

Cặp \(m=2\) , \(n=1\) vẫn thỏa \(m^2-2020n^2+2022⋮mn\)

Bình luận (0)
CL
19 tháng 6 2023 lúc 21:29

Để chứng minh rằng m và n là hai số lẻ và nguyên tố cùng nhau, ta cần thực hiện các bước sau đây:

Bước 1: Giả sử rằng m và n là hai số tự nhiên thỏa mãn m^2 - 2020n^2 + 2022 chia hết cho mn.

Bước 2: Ta sẽ chứng minh rằng m và n là hai số lẻ.

Giả sử rằng m là số chẵn, tức là m = 2k với k là một số tự nhiên. Thay thế vào biểu thức ban đầu, ta có:

(2k)^2 - 2020n^2 + 2022 chia hết cho 2kn

Simplifying the equation, we get:

4k^2 - 2020n^2 + 2022 chia hết cho 2kn

Dividing both sides by 2, we have:

2k^2 - 1010n^2 + 1011 chia hết cho kn

Do 2k^2 chia hết cho kn, vì vậy 2k^2 cũng chia hết cho kn. Từ đó, 1011 chia hết cho kn.

Bởi vì 1011 là một số lẻ, để 1011 chia hết cho kn, thì kn cũng phải là một số lẻ. Vì vậy, n cũng phải là số lẻ.

Do đó, giả sử m là số chẵn là không hợp lệ. Vậy m phải là số lẻ.

Bước 3: Chứng minh rằng m và n là hai số nguyên tố cùng nhau.

Giả sử rằng m và n không phải là hai số nguyên tố cùng nhau. Điều đó có nghĩa là tồn tại một số nguyên tố p chia hết cả m và n.

Vì m là số lẻ, n là số lẻ và p là số nguyên tố chia hết cả m và n, vì vậy p không thể chia hết cho 2.

Ta biểu diễn m^2 - 2020n^2 + 2022 dưới dạng phân tích nhân tử:

m^2 - 2020n^2 + 2022 = (m - n√2020)(m + n√2020)

Vì p chia hết cả m và n, p cũng phải chia hết cho (m - n√2020) và (m + n√2020).

Tuy nhiên, ta thấy rằng (m - n√2020) và (m + n√2020) không thể cùng chia hết cho số nguyên tố p, vì chúng có dạng khác nhau (một dạng có căn bậc hai và một dạng không có căn bậc hai).

Điều này dẫn đến mâu thuẫn, do đó giả sử ban đầu là sai.

Vậy ta có kết luận rằng m và n là hai số tự nhiên lẻ và nguyên tố cùng nhau.

Bình luận (0)
KC
Xem chi tiết
NT
Xem chi tiết
NC
Xem chi tiết
LN
Xem chi tiết
TH
11 tháng 10 2021 lúc 21:58

1. Từ công thức hóa học của canxi photphat: Ca3(PO4)2, ta biết được rằng trong công thức gồm 3 nguyên tử canxi và 2 nhóm photphat.

2. Ta có:

4M = 7X => M = 7/4 X

2M + 3(X + 4 . 16) = 400

2 (7/4 X) + 3(X + 64) = 400

14/4 X + 3X + 192 = 400

14/4 X + 12/4 X = 400 - 192

26/4 X = 208

26X = 208 . 4 = 832

X = 832/26 = 32 (S)

M = 7/4 * 32 = 56 (Fe)

Vậy M là sắt, X là nguyên tố lưu huỳnh 

 

Bình luận (0)
H24
Xem chi tiết
PN
Xem chi tiết
DL
10 tháng 6 2016 lúc 16:02

a và b là nguyên tố cùng nhau nên UCLN(a;b) = 1

=> UCLN (a;a+b)=1 => UCLN (a2 ;a+b) =1 nên a2 và a+b cũng là hai số nguyên tố cùng nhau. 

Bình luận (0)
PN
11 tháng 6 2016 lúc 9:16

Chắc không Đinh Thùy Linh ???

Bình luận (0)
NA
Xem chi tiết