Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
BB
Xem chi tiết
NL
27 tháng 12 2020 lúc 8:17

Cấu hỏi đâu mà trả lờihum

Bình luận (0)
NL
27 tháng 12 2020 lúc 10:56

\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{1}{a}\Leftrightarrow\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{1}{x+y+z}\)

\(\Leftrightarrow\dfrac{x+y}{xy}+\dfrac{1}{z}-\dfrac{1}{x+y+z}=0\)

\(\Leftrightarrow\dfrac{x+y}{xy}+\dfrac{x+y}{z\left(x+y+z\right)}=0\)

\(\Leftrightarrow\dfrac{\left(x+y\right)\left(xy+yz+zx+z^2\right)}{xyz\left(x+y+z\right)}=0\)

\(\Leftrightarrow\dfrac{\left(x+y\right)\left(y+z\right)\left(z+x\right)}{xyz\left(x+y+z\right)}=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+y=0\\y+z=0\\z+x=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}z=a\\x=a\\y=a\end{matrix}\right.\)

Bình luận (0)
TH
Xem chi tiết
PC
5 tháng 4 2018 lúc 22:00

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\)

\(\Leftrightarrow\frac{xy+yz+zx}{xyz}=\frac{1}{x+y+z}\)

\(\Rightarrow\left(x+y+z\right)\left(xy+yz+zx\right)=xyz\)

\(\Leftrightarrow x^2y+xyz+zx^2+xy^2+y^2z+xyz+xyz+yz^2+z^2x-xyz=0\)

\(\Leftrightarrow x^2y+x^2z+y^2x+y^2z+z^2x+z^2y+2xyz=0\)

\(\Leftrightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)=0\)

Bình luận (0)
NH
Xem chi tiết
KT
8 tháng 1 2018 lúc 21:09

              \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{a}\)

\(\Leftrightarrow\)\(\frac{xy+yz+xz}{xyz}=\frac{1}{x+y+z}\)

\(\Leftrightarrow\)\(\left(xy+yz+xz\right)\left(x+y+z\right)=xyz\)

\(\Leftrightarrow\)\(\left(xy+yz+xz\right)\left(x+y+z\right)-xyz=0\)

\(\Leftrightarrow\)\(x^2y+xyz+x^2z+xy^2+xyz+y^2z+x^2z+xyz+xz^2-xyz=0\)

\(\Leftrightarrow\)\(\left(x+y\right)\left(y+z\right)\left(x+z\right)=0\)                  (chỗ này mk lm tắt nha)

\(\Leftrightarrow\)\(x+y=0\)       \(\Leftrightarrow\)   \(z=a\)

          \(y+z=0\)                     \(x=a\)

         \(x+z=0\)                      \(y=a\)

Vậy  tồn tại 1 trong 3 số  x,y,z = a       (đpcm)

Bình luận (0)
HM
Xem chi tiết
KT
Xem chi tiết
VC
23 tháng 12 2017 lúc 23:49

từ giả thiết => \(\frac{1}{x+y+z}=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)

sau đó quy đòng và tách nhân tử là (x+y)(y+z)(z+x)=0

=> 2 số sẽ đối nhau, nên sẽ tồn tại 1 số = a

Bình luận (0)
CN
Xem chi tiết
CB
Xem chi tiết
LH
18 tháng 1 2016 lúc 9:11

đề bài sai, phải là 1/x+1/y+1/z=1/3 chứ

Bình luận (0)
TK
18 tháng 1 2016 lúc 8:28

em mới học lớp 6 nha

sory

Bình luận (0)
BN
18 tháng 1 2016 lúc 8:56

tic cho mình hết âm nhé

Bình luận (0)
ND
Xem chi tiết
TM
Xem chi tiết