Những câu hỏi liên quan
QL
Xem chi tiết
KT
23 tháng 9 2023 lúc 23:48

Tham khảo:

a) \(f\left( x \right) =  - 3{x^2} + 4x - 1\)

\(a =  - 3 < 0\), \(\Delta  = {4^2} - 4.\left( { - 3} \right).\left( { - 1} \right) = 4 > 0\)

=> \(f\left( x \right)\) có 2 nghiệm \(x = \frac{1}{3},x = 1\)

Bảng xét dấu:

b) \(f\left( x \right) = {x^2} - x - 12\)

\(a = 1 > 0\), \(\Delta  = {\left( { - 1} \right)^2} - 4.1.\left( { - 12} \right) = 49 > 0\)

=> \(f\left( x \right)\) có 2 nghiệm \(x =  - 3,x = 4\)

Bảng xét dấu:

c) \(f\left( x \right) = 16{x^2} + 24x + 9\)

\(a = 16 > 0\), \(\Delta ' = {12^2} - 16.9 = 0\)

=> \(f\left( x \right)\) có nghiệm duy nhất \(x =  - \frac{3}{4}\)

Bảng xét dấu:

Bình luận (0)
QL
Xem chi tiết
KT
23 tháng 9 2023 lúc 11:43

Tham khảo:

Tam thức bậc hai \(f\left( x \right) =  - {x^2} - 2x + 8\) có hai nghiệm phân biệt \({x_1} =  - 4,{x_2} = 2\) và hệ số \(a =  - 1 < 0\).

Ta có bảng xét dấu \(f\left( x \right)\) như sau:

Bình luận (0)
TV
Xem chi tiết
BH
24 tháng 2 2016 lúc 9:11

Đặt TT: = \(x^2+3x+2;MT:=-x^2+x+12\)

Lập bảng xét dấu  TT và MT trên tập xác đinh D=R/\(\left\{-3;4\right\}\)

Từ đó suy ra dấu của f(x)

x-\(\infty\)        -3             1             2              4             \(+\infty\)
TT         +            +     0       -     0       +            +
MT         -     0      +              +              +    0      -
f(x)         -     //       +     0      -     0        +     //     -

Từ bảng xét dấu ta được 

\(T\left(f\left(x\right)=0\right)=\left\{1;2\right\}\)   ; \(T\left(f\left(x\right)\ne0\right)=R\) / \(\left\{-3;1;2;4\right\}\)

\(T\left(f\left(x\right)>0\right)=\left(3;1\right)\cup\left(2;4\right)\) ; \(T\left(f\left(x\right)\ge0\right)=\left(-3;1\right)\cup\left(2;4\right)\)

\(T\left(f\left(x\right)<0\right)=\left(-\infty;-3\right)\cup\left(1;2\right)\cup\left(4;+\infty\right)\)

\(T\left(f\left(x\right)\le0\right)=\left(-\infty;-3\right)\cup\left[1;2\right]\cup\left(4;+\infty\right)\)

 

Bình luận (0)
BD
Xem chi tiết
TN
23 tháng 2 2016 lúc 16:05

Có \(a=1>0;\Delta'=4>0;x_1=-5;x_2=-1\)

Lập bảng xét dấu :

\(x\)\(-\infty\)               -5                  -1                    \(+\infty\)
\(f\left(x\right)\)              +        0        -           0         +

 

Bình luận (0)
TN
23 tháng 2 2016 lúc 16:09

Từ bảng xét dấu trên ta có 

\(T\left(f\left(x\right)=0\right)=\left\{-5;-1\right\};T\left(f\left(x\right)\ne0\right)=R\) / \(\left\{-5;-1\right\}\)

\(T\left(f\left(x\right)>0\right)=\left(-\infty;-5\right)\cup\left(-1;+\infty\right)\)

\(T\left(f\left(x\right)\ge0\right)=\left(-\infty;-5\right)\cup\left(-1;+\infty\right)\)

\(T\left(f\left(x\right)<0\right)=\left(-5;-1\right);T\left(f\left(x\right)\le0\right)=\left(-5;-1\right)\)

Bình luận (0)
QL
Xem chi tiết
KT
23 tháng 9 2023 lúc 23:36

Tham khảo:

a) Ta có tam thức bậc hai \(f\left( x \right) = {x^2} - x - 2\) có 2 nghiệm phân biệt \({x_1} =  - 1,{x_2} = 2\) và hệ số \(a = 1 > 0\)

Ta có bảng xét dấu f(x) như sau:

Vậy tập nghiệm của bất phương trình là \(\left( { - \infty ; - 1} \right) \cup \left( {2; + \infty } \right)\)b) Từ bảng xét dấu ta thấy \(f\left( x \right) > 0 \Leftrightarrow \left[ \begin{array}{l}x <  - 1\\x > 2\end{array} \right.\)

Bình luận (0)
VT
Xem chi tiết
DQ
24 tháng 2 2016 lúc 8:26

Ta có \(a=-5<0;\Delta'=16>0;x_1=-\frac{3}{5};x_2=1\)

Bảng xét dấu :

\(x\)\(-\infty\)             \(-\frac{3}{5}\)                  1                   \(+\infty\)
\(f\left(x\right)\)              -           0        +                   -

Từ bảng xét, ta được :

\(T\left(f\left(x\right)=0\right)=\left\{-\frac{3}{5};1\right\}\) ; \(T\left(f\left(x\right)\ne0\right)=R\)\(\left\{-\frac{3}{5};1\right\}\)

\(T\left(f\left(x\right)>0\right)=\left\{-\frac{3}{5};1\right\}\) ; \(T\left(f\left(x\right)\ge0\right)=\left[-\frac{3}{5};1\right]\)

Từ : \(T\left(f\left(x\right)<0\right)=\left(-\infty;-\frac{3}{5}\right)\cup\left(1;+\infty\right)\) ; \(T\left(f\left(x\right)\le0\right)=\left(-\infty;-\frac{3}{5}\right)\cup\left(1;+\infty\right)\)

Bình luận (0)
KT
Xem chi tiết
LH
Xem chi tiết
H24
29 tháng 10 2017 lúc 8:29

Của bạn thiếu dấu bằng .

Ta xét dấu các biểu thức trong dấu GTTĐ để khử dấu gttđ
VD1: Giải pt:
|2x−1|+|2x−5|=4−−(1)|2x−1|+|2x−5|=4−−(1)
Giải:
Ta lập bảng khử dấu gttđ:
bangxetdau.png 
Từ đó ta xét 3 trường hợp sau:
- Xét x<12x<12
(1) trở thành −4x+6=4⇔x<12−4x+6=4⇔x<12, không phụ thuộc vào khoảng đang xét
- Xét 12≤x<5212≤x<52, (1) trở thành 4=44=4 đúng với mọi x khoảng đang xét
- Xét x≥52x≥52:
(1) trở thành 4x−6=4⇔x=524x−6=4⇔x=52, thuộc vào khoảng đang xét
Kết luận: Nghiệm của pt (1) là 12≤x≤5212≤x≤52
Mách nhỏ: Để khỏi nhầm lẫn trong việc lập bảng khử dấu giá trị tuyệt đối, các bạn hãy nhớ lấy câu: "Trái khác, phải cùng" tức là: Bên trái nghiệm của biểu thức sẽ mang dấu khác (trái) với biếu thức ta nhìn thấy, bên phải nghiệm của biểu thức sẽ mang dấu cùng với biểu thức ta nhìn thấy.

Phương pháp 2: Phương pháp biến đổi tương đương
Ta áp dụng 2 phép biến đổi cơ bản sau:
1) |a|=b⇔⎧⎪⎨⎪⎩b≥0[a=ba=−b|a|=b⇔{b≥0[a=ba=−b
2) |a|=|b|⇔[a=ba=−b|a|=|b|⇔[a=ba=−b
VD: Giải pt:
|x−1|=|3x−5|−(2)|x−1|=|3x−5|−(2)
Giải:
Áp dụng phép biến đổi 2 ta có:
(2)⇔[x−1=3x−5x−1=−3x+5(2)⇔[x−1=3x−5x−1=−3x+5
⇔⎡⎣x=2x=32⇔[x=2x=32
Kết luận: pt (2) có 2 nghiệm x1=2;x2=32x1=2;x2=32
Nhận xét: Ta có thể sử dụng phương pháp 1 để giải phương trình (2)
 

Bình luận (0)
H24
Xem chi tiết
NG
14 tháng 10 2023 lúc 13:00

loading...  

Bình luận (1)