ƯCLN(a,b)=12
BCNN(a,b)=72
tìm a,b
chứng minh: ƯCLN(k.a; k.b)=k.ƯCLN(a;b)
và chứng minh: ƯCLN( a;b;c)= ƯCLN( ƯCLN (a;b);c)= ƯCLN( ƯCLN (a;c);b)=ƯCLN( ƯCLN (b;c);a)
Chứng minh rằng:
a, ƯCLN(a,b)=ƯCLN(a,a+b)
b, ƯCLN(a,b)=ƯCLN(a,a+b/2)
Tìm hai số tự nhiên a và b (a>b), biết rằng :
a) a=96 và ƯCLN(a,b)=12
b) ƯCLN(a,b)=45 và a=270
c) a+b=120 và ƯCLN(a,b)=12
d) a+b=224 và ƯCLN(a,b)=28
e) a.b=1944 và ƯCLN(a,b)=18
a, b: Bạn xem lại đề.
c.
Vì $ƯCLN(a,b)=12$ và $a>b$ nên đặt $a=12x, b=12y$ với $x,y$ là stn, $x>y$, $(x,y)=1$. Khi đó:
$a+b=12x+12y=120\Rightarrow x+y=10$
Vì $x>y, (x,y)=1$ nên $x,y$ có thể nhận giá trị là:
$(x,y)=(9,1), (7,3)$
$\Rightarrow (a,b)=(108. 12), (84, 36)$
d.
Vì $ƯCLN(a,b)=28$ và $a>b$ nên đặt $a=28x, b=28y$ với $x,y$ là stn, $x>y$, $(x,y)=1$. Khi đó:
$a+b=28x+28y=224$
$\Rightarrow x+y=8$
Vì $x>y$ và $(x,y)=1$ nên $x,y$ có thể nhận các giá trị là:
$(x,y)=(7,1), (5,3)$
$\Rightarrow (a,b)=(196, 28), (140, 84)$
e.
Vì $ƯCLN(a,b)=18$ và $a>b$ nên đặt $a=18x, b=18y$ với $x,y$ là stn, $x>y$, $(x,y)=1$. Khi đó:
$a+b=18x+18y1944$
$\Rightarrow x+y=108$
Với điều kiện $x>y, (x,y)=1$ thì $x,y$ có thể nhận khá nhiều giá trị. Bạn có thể xét từng TH để tính toán nhé.
CMR:
1.ƯCLN(a,b)=1 thì ƯCLN(a+b,a-b)=1 hoặc 2
2.a,b,c là số lẻ thì ƯCLN(a,b,c)= ƯCLN(a+b/2;b+c/2;c+a/2)
3.Cho ƯCLN(a,b)=1.Tìm ƯCLN (11a+2b;18a+5b)
Điền đúng hoặc sai
a) Nếu a chia hết cho b thì ƯCLN (a;b) = a
b) Nếu a chia hết cho b thì ƯCLN (a;b;c) = ƯCLN (b';c)
c) Nếu a là số nguyên tố và b khác a thì ƯCLN (a;b;c) = ƯCLN ( a;b ) = 1
Tìm các số tự nhiên a,b (a<b) . Biết rằng :
a) BCNN (a,b)|+ƯCLN (a;b)=19
b)BCNN (a,b) - ƯCLN ( a,b) =3
c) a + b = 96 và ƯCLN (A,B) = 12
D) A-B = 441 VÀ ƯCLN (a,b) =4
e) a-b=96 và ƯCLN (a,b) = 16(a,b<200)
ý a : a = 1;b = 18
ý b : a=1;b=4
ý c : a = 12 ; b = 84
kết quả độ ra thì đơn giản nhưng cách trình bày mới quan trọng
Tìm hai số a,b ϵ N, biết
a) ƯCLN(a, b) + BCNN(a, b) = 19
b) BCNN(a, b) - ƯCLN( a, b) = 5
c) BCNN(a, b) - ƯCLN(a, b) = 35
Lời giải:
a. Gọi $d=ƯCLN(a,b)$. Khi đó, đặt $a=dx, b=dy$ với $x,y$ là số tự nhiên, $x,y$ nguyên tố cùng nhau.
Khi đó: $BCNN(a,b)=dxy$
Theo bài ra: $d+dxy=19$
$\Rightarrow d(1+xy)=19$
Do $d, 1+xy$ đều là số tự nhiên nên có 2 TH xảy ra:
TH1: $d=1, 1+xy=19\Rightarrow d=1, xy=18$
Do $ƯCLN(x,y)=1$ nên $(x,y)=(1,18), (2,9), (9,2), (18,1)$
$\Rightarrow (a,b)=(dx, dy) +(1,18), (2,9), (9,2), (18,1)$
b,c bạn làm tương tự theo hướng của câu a nhé.
ƯCLN ( a; b) = 1. CMR :
a, ƯCLN (a; a-b) = 1
b, ƯCLN ( ab; a+b) = 1
Cho a,b thuộc N.CMR:
a, ƯCLN(a,b)=ƯCLN(a,a+b)
b, ƯCLN(a,b)=ƯCLN(5a+2b,7a+3b)