(a-b+c)^3+(a+b-c)^3+(-a+b+c)^3 chia hết cho 3 (a+b+c chia hết cho 3)
CMR:
a) (a-b+c)3+(a+b-c)3+(-a+b+c)3 chia hết cho 3 (a+b+c chia hết cho 3)
b) với a, b, c là các số tự nhiên có đúng 1 số lẻ và 2 số chẵn. CMR:
(a+b+c)3-(a-b+c)3-(a+b-c)3-(-a+b+c)3 chia hết cho 96
giúp mik với
CMR:
a) (a-b+c)3+(a+b-c)3+(-a+b+c)3 chia hết cho 3 (a+b+c chia hết cho 3)
b) với a, b, c là các số tự nhiên có đúng 1 số lẻ và 2 số chẵn. CMR:
(a+b+c)3-(a-b+c)3-(a+b-c)3-(-a+b+c)3 chia hết cho 96
cho a,b,c là các số tự nhiên sao cho a+b+c chia hết cho 6, a^2+b^2+c^2 chia hết cho 36.
- Chứng minh : a^3+b^3+c^3 chia hết cho 8
- Có thể nói a^3+b^3+c^3 chia hết cho 27 không ? Tại sao
cmr với n là số tn thì
a)2 nhân n mũ 3 +n chia hết cho 3.
b)n nhân (5n cộng 3) nhân (2n mũ 2 cộng 1) chia hết cho 6.
c) cho số tn a,b,c. chứng minh rằng a mũ 3 cộng b mũ 3 cộng c mũ 3 chia hết cho 6 thì a cộng b cộng c chia hết cho 6 và ngược lại, nếu a +b+c chia hết cho 6 thì a mũ 3 +b mũ 3+c mũ 3 cũng chia hết cho 6
cho các số nguyên a, b, c.cmr:
a)Nếu a+b+c chia hết cho 6 thì \(a^3+b^3+c^3\)
chia hết cho 6
b)Nếu a+b+c chia hết cho 30 thì \(a^3+b^3+c^3\)chia hết cho 30
Cho các số tự nhiên a,b,c thỏa a+b+c chia hết cho 6 và a^2+b^2+c^2 chia hết cho 36
a) CMR: a^3+b^3+c^3 chia hết cho 8
b) Có thể khẳng định a^3+b^3+c^3 chia hết cho 27 không? Tại sao?
GIÚP MIK VỚI ! GẤP
trang có câu hỏi mà ko trả lời thì như c**
Cho 3 số nguyên a,b,c thỏa mãn \(\left(a^3+b^3\right)\left(b^3+c^3\right)\left(c^3+a^3\right)\)chia hết cho 5 chứng minh (a-b)(b-c)(c-a) chia hết cho 5
Đề bài bị sai, ví dụ với \(\left(a;b;c\right)=\left(1;2;3\right)\) thì \(\left(a^3+b^3\right)\left(b^3+c^3\right)\left(c^3+a^3\right)\) chia hết cho 5 nhưng \(\left(a-b\right)\left(b-c\right)\left(c-a\right)\) ko chia hết cho 5
1)CMR:
a)a3-7a chia hết cho 6
b)a3-13a chia hết cho 6
c)a3+5a chia hết cho 6
d)a3+11a chia hết cho 6
2) Cho a+b+c chia hết cho 6 . CMR:a3+b3+c3 chia hết cho 6
3)a3-a chia hết cho 24a
4)a3b-b3a chia hết cho 6(a,b thuộc Z)
Xét \(\left(a^3+b^3+c^3+d^3\right)-\left(a+b+c+d\right)\)
\(=\left(a^3-a\right)+\left(b^3-b\right)+\left(c^3-c\right)+\left(d^3-d\right)\)
Ta có \(a^3-a=a\left(a^2-1\right)=\left(a-1\right)a\left(a+1\right)⋮6\)(vì tích của 3 số nguyên/số tự nhiên liên tiếp)
Tương tự ta có \(\left(b^3-b\right)⋮6;\left(c^3-c\right)⋮6;\left(d^3-d\right)⋮6\)
\(\Rightarrow\left(a^3-a\right)+\left(b^3-b\right)+\left(c^3-c\right)+\left(d^3-d\right)⋮6\)
\(\Rightarrow\left(a^3+b^3+c^3+d^3\right)-\left(a+b+c+d\right)⋮6\)
Mà \(a+b+c+d⋮6\Rightarrow a^3+b^3+c^3+d^3⋮6\left(ĐPCM\right)\)
P/S: bt làm có bài này thôi :v
3) a=2=>a^3-a=8-2=6 ko chia hết cho 48 vô lí :(
ra nhieu the ai lam het duoc vay ban
CHo 3 số nguyên a,b,c thỏa mãn \(\left(a^3+b^3\right)\left(b^3+c^3\right)\left(c^3+a^3\right)\)chia hết cho 5 Chứng minh rằng (a+b)(b+c)(c+a) chia hết cho 5