gieo đồng thời 2 con xúc sắc tính xác suất để tổng số chấm trên 2 con xúc xắc bằng 8
Gieo đồng thời hai con xúc xắc cân đối. Tính xác suất để:
a) Tổng số chấm trên hai con xúc xắc bằng 8;
b) Tổng số chấm trên hai con xúc xắc nhỏ hơn 8.
Số phần tử của không gian mẫu là \(n\left( \Omega \right) \ = {6^2}\; =36 \) .
a) Gọi A là biến cố: “Tổng số chấm trên hai con xúc xắc bằng 8”
Ta có \(A = \left\{ {\left( {2,6} \right);\left( {3,5} \right);\left( {4,4} \right);\left( {5,3} \right);\left( {6,2} \right)} \right\}\) suy ra \(n\left( A \right) = 5\)
Vậy xác suất của biến cố A là \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}} = \frac{5}{{36}}\)
b) Gọi B là biến cố: “Tổng số chấm trên hai con xúc xắc nhỏ hơn 8”
Gọi C là biến cố: “Tổng số chấm trên hai con xúc xắc lớn hơn 8”
\(C = \left\{ {\left( {3;6} \right),\left( {4;5} \right),\left( {4;6} \right),\left( {5;4} \right),\left( {5;5} \right),\left( {5;6} \right),\left( {6;3} \right),\left( {6;4} \right),\left( {6;5} \right),\left( {6;6} \right)} \right\}\) suy ra \(n\left( C \right) = 10\)
Ta có: \(n\left( B \right) = n\left( \Omega \right) - n\left( A \right) - n\left( C \right) = 21\)
Vậy xác suất của biến cố B là \(P\left( B \right) = \frac{{n\left( B \right)}}{{n\left( \Omega \right)}} = \frac{{21}}{{36}} = \frac{7}{{12}}\).
Gieo đồng thời hai con xúc xắc cân đối. Tính xác suất để tổng số chấm xuất hiện trên hai con xúc xắc bằng 4 hoặc bằng 6.
Số phần tử của không gian mẫu là \(n\left( \Omega \right) = 36\).
Gọi E là biến cố tổng số chấm xuất hiện trên hai con xúc xắc bằng 4 hoặc bằng 6. Khi đó ta có \(E = \left\{ {\left( {1,3} \right);\left( {2,2} \right);\left( {3,1} \right);\left( {1,5} \right);\left( {2,4} \right);\left( {3,3} \right);\left( {4,2} \right);\left( {5,1} \right)} \right\} \Rightarrow n\left( E \right) = 8\).
Vậy xác suất của biến cố E là \(P\left( E \right) = \frac{{n\left( E \right)}}{{n\left( \Omega \right)}} = \frac{8}{{36}} = \frac{2}{9}\).
Gieo đồng thời 3 con xúc xắc. Tìm xác suất để có 1 con xúc xắc xuất hiện số chấm bằng tích số chấm xuất hiện trên 2 con xúc xắc còn lại.
A. P = 25 216
B. P = 27 216
C. P = 24 216
D. P = 45 216
Gieo đồng thời 2 con xúc xắc. Tìm xác suất để tổng số chấm xuất hiện trên 2 con xúc xắc là 1 số nguyên tố.
A. p = 1 4
B. p = 7 18
C. p = 5 12
D. p = 13 36
Gieo đồng thời hai con xúc xắc. Tính xác suất của các biến cố sau:
a) Tổng số chấm xuất hiện trên hai con xúc sắc là 10.
b) Tổng số chấm xuất hiện trên hai con xúc sắc là số lẻ.
Gọi X là tập hợp các kết quả có thể xảy ra.
Ta có \(X=\left\{\left(1;1\right);\left(1;2\right);\left(1;3\right);...;\left(6;6\right)\right\}\). Ta thấy tập hợp trên có 36 phần tử, hoặc 36 kết quả có thể xảy ra.
a) Biến cố trên có thể xảy ra nếu xảy ra 1 trong các kết quả sau:
(4;6); (5;5); (6;4). Có 3 kết quả để biến cố trên xảy ra.
Vậy xác suất của biến cố trên là \(\dfrac{3}{36}=\dfrac{1}{12}\).
b) Biến cố trên có thể xảy ra nếu xảy ra 1 trong các kết quả sau:
(1;2); (2;1); (1;4); (2;3); (3;2); (4;1); (1;6); (2;5); (3;4); (4;3); (5;2); (6;1); (3;6); (4;5); (5;4); (6;3); (5;6); (6;5). Có 18 kết quả để biến cố trên xảy ra.
Vậy xác suất để biến cố trên xảy ra là \(\dfrac{18}{36}=\dfrac{1}{2}\).
gieo đồng thời 2 con xúc xắc cân đối . tính xác suất để số chấm xuất hiện trên 2 con xúc xắc hơn kém nhau 2 .
các trường hợp là :
3-1
4-2
5-3
6-4
=> xác suất P=4/36=1/9
gieo đồng thời 2 con xúc xắc cân đối . tính xác suất để số chấm xuất hiện trên 2 con xúc xắc hơn kém nhau 2 .
gieo đồng thời 2 con xúc xắc cân đối . tính xác suất để số chấm xuất hiện trên 2 con xúc xắc hơn kém nhau 2 .
gieo đồng thời 2 con xúc xắc cân đối . tính xác suất để số chấm xuất hiện trên 2 con xúc xắc hơn kém nhau 2 .