Bài tập cuối chương IX

QL

Gieo đồng thời hai con xúc xắc cân đối. Tính xác suất để:

a) Tổng số chấm trên hai con xúc xắc bằng 8;

b) Tổng số chấm trên hai con xúc xắc nhỏ hơn 8.

HM
1 tháng 10 2023 lúc 20:58

Số phần tử của không gian mẫu là \(n\left( \Omega  \right) \ = {6^2}\; =36 \) .

a) Gọi A là biến cố: “Tổng số chấm trên hai con xúc xắc bằng 8”

Ta có \(A = \left\{ {\left( {2,6} \right);\left( {3,5} \right);\left( {4,4} \right);\left( {5,3} \right);\left( {6,2} \right)} \right\}\) suy ra \(n\left( A \right) = 5\)

Vậy xác suất của biến cố A là \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega  \right)}} = \frac{5}{{36}}\)

b) Gọi B là biến cố: “Tổng số chấm trên hai con xúc xắc nhỏ hơn 8”

Gọi C là biến cố: “Tổng số chấm trên hai con xúc xắc lớn hơn 8”

\(C = \left\{ {\left( {3;6} \right),\left( {4;5} \right),\left( {4;6} \right),\left( {5;4} \right),\left( {5;5} \right),\left( {5;6} \right),\left( {6;3} \right),\left( {6;4} \right),\left( {6;5} \right),\left( {6;6} \right)} \right\}\) suy ra \(n\left( C \right) = 10\)

Ta có: \(n\left( B \right) = n\left( \Omega  \right) - n\left( A \right) - n\left( C \right) = 21\)

Vậy xác suất của biến cố B là \(P\left( B \right) = \frac{{n\left( B \right)}}{{n\left( \Omega  \right)}} = \frac{{21}}{{36}} = \frac{7}{{12}}\).

Bình luận (0)

Các câu hỏi tương tự
QL
Xem chi tiết
QL
Xem chi tiết
QL
Xem chi tiết
QL
Xem chi tiết
QL
Xem chi tiết
QL
Xem chi tiết
QL
Xem chi tiết
QL
Xem chi tiết
QL
Xem chi tiết