\((\dfrac{3}{4}x -\dfrac{9}{16}) (\dfrac{1}{3} + \dfrac{-3}{5} : x ) =0\)
Tìm x, biết:
a, \(\left(2\dfrac{3}{4}-1\dfrac{4}{5}\right)x=1\)
b, \(x^2-9\) \(3-5x=0\)
c, \(\left|3x-1\right|+2\dfrac{3}{4}=3\dfrac{1}{16}\)
a) \(\left(2\dfrac{3}{4}-1\dfrac{4}{5}\right)\cdot x=1\)
\(\left(\dfrac{11}{4}-\dfrac{9}{5}\right)\cdot x=1\)
\(\dfrac{19}{20}x=1\)
\(x=\dfrac{20}{19}\)
Vậy \(x=\dfrac{20}{19}\)
b) \(\left(x^2-9\right)\left(3-5x\right)=0\)
TH1:
\(x^2-9=0\)
\(x^2=9\)
\(x^2=3^2=\left(-3\right)^2\)
=>\(x\in\left\{3;-3\right\}\)
TH2:
\(3-5x=0\)
\(5x=3\)
\(x=\dfrac{3}{5}\)
Vậy \(x\in\left\{3;-3;\dfrac{3}{5}\right\}\)
Câu 1: Thực hiện phép tính
a, \(40\dfrac{1}{4}:\dfrac{5}{7}-25\dfrac{1}{4}:\dfrac{5}{7}-\dfrac{1}{2021}\)
b, \(\left|\dfrac{-5}{9}\right|.\sqrt{81}-2021^0.\dfrac{16}{25}\)
Câu 2: Tìm x
\(3\left(x-\dfrac{1}{3}\right)-7\left(x+\dfrac{3}{7}\right)=-2x+\dfrac{1}{3}\)
1:
a: =7/5(40+1/4-25-1/4)-1/2021
=21-1/2021=42440/2021
b: =5/9*9-1*16/25=5-16/25=109/25
Tìm x:
a) \(\dfrac{-3}{7}\).x=\(\dfrac{3}{56}\).\(\dfrac{28}{9}\)
b) x-\(\dfrac{3}{16}\)=\(\dfrac{7}{15}\):\(\dfrac{3}{5}\)
c) \(\dfrac{2}{5}\)+\(\dfrac{1}{5}\).x=\(\dfrac{5}{6}\)
d) \(\dfrac{3}{4}\)x-\(\dfrac{2}{5}\)x=\(\dfrac{3}{7}\).\(\dfrac{1}{6}\)+\(\dfrac{5}{7}\).\(\dfrac{1}{6}\)
*Lưu ý: Trình bày chi tiết kết quả.
a)\(x=\left(\dfrac{3}{56}\cdot\dfrac{28}{9}\right):\dfrac{-3}{7}=\dfrac{1}{6}:\dfrac{-3}{7}=-\dfrac{7}{18}\)
b)\(x=\left(\dfrac{7}{15}\cdot\dfrac{5}{3}\right)+\dfrac{3}{16}=\dfrac{7}{9}+\dfrac{3}{16}=\dfrac{139}{144}\)
c)\(x=\left(\dfrac{5}{6}-\dfrac{2}{5}\right).5=\dfrac{13}{6}\)
d)\(=>x\left(\dfrac{3}{4}-\dfrac{2}{5}\right)=\dfrac{1}{6}\cdot\left(\dfrac{3}{7}+\dfrac{5}{7}\right)\)
\(x\cdot\dfrac{7}{20}=\dfrac{4}{21}=>x=\dfrac{4}{21}\cdot\dfrac{20}{7}=\dfrac{80}{147}\)
tìm x:
\(\left(\dfrac{3}{4}x-\dfrac{9}{16}\right)\left(\dfrac{1}{3}-\dfrac{3}{5}:x\right)=0\)
\(\left(\dfrac{3}{4}x-\dfrac{9}{16}\right)\left(\dfrac{1}{3}-\dfrac{3}{5}:x\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}\dfrac{3}{4}x-\dfrac{9}{16}=0\\\dfrac{1}{3}-\dfrac{3}{5}:x=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\dfrac{3}{4}x=\dfrac{9}{16}\\\dfrac{3}{5}:x=\dfrac{1}{3}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{3}{4}\\x=\dfrac{9}{5}\end{matrix}\right.\)
\(\left(\dfrac{3}{4}x-\dfrac{9}{16}\right)\left(\dfrac{1}{3}-\dfrac{3}{5}:x\right)=0\)
\(\Rightarrow\left(\dfrac{3}{4}x-\dfrac{9}{16}\right)\left(\dfrac{1}{3}-\dfrac{5}{3}x\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}\dfrac{3}{4}x-\dfrac{9}{16}=0\\\dfrac{1}{3}-\dfrac{5}{3}x=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\dfrac{3}{4}x=\dfrac{9}{16}\Rightarrow x=\dfrac{3}{4}\\\dfrac{5}{3}x=\dfrac{1}{3}\Rightarrow x=\dfrac{1}{5}\end{matrix}\right.\)
làm đầy đủ theo các bước nhé
Tìm x biết :
a) \(^{\dfrac{4}{9}+x=\dfrac{5}{3}}\)
b)\(\dfrac{3}{4}.x=\dfrac{-1}{2}\)
c) \(\dfrac{3}{7}+\dfrac{5}{7}:x=\dfrac{1}{3}\)
d)\(3\dfrac{1}{4}:\left|2x-\dfrac{5}{12}\right|=\dfrac{39}{16}\)
c.\(\dfrac{3}{7}+\dfrac{5}{7}:x=\dfrac{1}{3}\)
\(\dfrac{5}{7}:x=\dfrac{1}{3}-\dfrac{3}{7}\)
\(\dfrac{5}{7}:x=-\dfrac{2}{21}\)
\(x=\dfrac{5}{7}:-\dfrac{2}{21}\)
\(x=-\dfrac{15}{2}\)
d.\(3\dfrac{1}{4}:\left|2x-\dfrac{5}{12}\right|=\dfrac{39}{16}\)
\(\left|2x-\dfrac{5}{12}\right|=3\dfrac{1}{4}:\dfrac{39}{16}\)
\(\left|2x-\dfrac{5}{12}\right|=\dfrac{4}{3}\)
\(\rightarrow\left[{}\begin{matrix}2x-\dfrac{5}{12}=\dfrac{4}{3}\\2x-\dfrac{4}{12}=-\dfrac{4}{3}\end{matrix}\right.\) \(\rightarrow\left[{}\begin{matrix}2x=\dfrac{7}{4}\\2x=-\dfrac{11}{12}\end{matrix}\right.\) \(\rightarrow\left[{}\begin{matrix}x=\dfrac{7}{8}\\x=-\dfrac{11}{24}\end{matrix}\right.\)
A, \(\dfrac{4}{9}+x=\dfrac{5}{3}\)
\(x\)\(=\dfrac{5}{3}-\dfrac{4}{9}\)
\(x\)\(=\dfrac{11}{9}\)
B,\(\dfrac{3}{4}.x=\dfrac{-1}{2}\)
\(x=\dfrac{-1}{2}:\dfrac{3}{4}\)
\(x=\)\(\dfrac{-2}{3}\)
a)
\(\frac{4}{9} + x = \frac{5}{3}\)
=> \(x = \frac{5}{3}-\frac{4}{9}\)
=> \(x = \) \(\frac{11}{9}\)
Vậy \(x = \dfrac{11}{9}\)
b)
\(\dfrac{3}{4} .x = \dfrac{-1}{2}\)
=> \(x = \dfrac{-1}{2} : \dfrac{3}{4}\)
=> \(x = \dfrac{-2}{3}\)
Vậy \(x = \dfrac{-2}{3}\)
c)
\( \dfrac{3}{7}+ \dfrac{5}{7}:x = \dfrac{1}{3}\)
=> \(\dfrac{5}{7}:x = \dfrac{1}{3}-\) \( \dfrac{3}{7}\)
=> \(\dfrac{5}{7}:x = \dfrac{-2}{21}\)
=> \(x = \dfrac{5}{7}:\dfrac{-2}{21}\)
=> \(x = \dfrac{-15}{2}\)
Vậy \(x = \dfrac{-15}{2}\)
d)
\(3\dfrac{1}{4} : |2x - \dfrac{5}{12} | = \dfrac{39}{16}\)
=> \(\dfrac{13}{4} : |2x - \dfrac{5}{12} | = \dfrac{39}{16}\)
=> \( |2x - \dfrac{5}{12} | =\dfrac{13}{4} : \dfrac{39}{16}\)
=> \(|2x-\dfrac{5}{12} |= \dfrac{4}{3}\)
=> \(\left[\begin{matrix} 2x - \dfrac{5}{12} = \dfrac{4}{3}\\ 2x - \dfrac{5}{12} = \dfrac{4}{3}\end{matrix}\right.\)
=> \(\left[\begin{matrix} 2x = \dfrac{-4}{3}+\dfrac{5}{12}\\ 2x = \dfrac{-4}{3}+\dfrac{5}{12} \end{matrix}\right.\)
=> \(\left[\begin{matrix} 2x = \dfrac{7}{4}\\ 2x = \dfrac{-11}{12} \end{matrix}\right.\)
=> \(\left[\begin{matrix} x = \dfrac{7}{8}\\ x = \dfrac{-11}{24} \end{matrix}\right.\)
Vậy \(x \in \) { \(\dfrac{7}{8} ; \dfrac{-11}{24}\) }
a,2.(\(\dfrac{1}{4}\)+x)\(^3\)=(\(-\dfrac{27}{4}\))
b,(x+\(\dfrac{1}{2}\))\(^3\):3=\(\dfrac{-1}{81}\)
c,(\(\dfrac{2}{3}\)-x)\(^2\)=1:\(\dfrac{4}{9}\)
d,(2x-\(\dfrac{1}{5}\))\(^2\)+\(\dfrac{16}{25}\)=1
e,(\(\dfrac{2}{5}\)-3x)\(^2\)-\(\dfrac{1}{5}\)=\(\dfrac{4}{25}\)
1 tìm x
a,\(\dfrac{1}{4}x-\left|-\dfrac{3}{10}\right|\)
\(\left(\dfrac{2}{5}-\dfrac{7}{10}x\right):1\dfrac{2}{3}=\dfrac{-3}{4}\)
\(\dfrac{7}{16}:\left(\dfrac{x}{4}+\dfrac{9}{2}\right)-1\dfrac{5}{6}=0\)
b: \(\left(\dfrac{2}{5}-\dfrac{7}{10}x\right):\dfrac{5}{3}=-\dfrac{3}{4}\)
\(\Leftrightarrow\dfrac{2}{5}-\dfrac{7}{10}x=\dfrac{-3}{4}\cdot\dfrac{5}{3}=\dfrac{-5}{4}\)
\(\Leftrightarrow x\cdot\dfrac{7}{10}=\dfrac{2}{5}+\dfrac{5}{4}=\dfrac{8+25}{20}=\dfrac{33}{20}\)
\(\Leftrightarrow x=\dfrac{33}{20}:\dfrac{7}{10}=\dfrac{33}{20}\cdot\dfrac{10}{7}=\dfrac{33}{14}\)
c: \(\dfrac{7}{16}:\left(\dfrac{1}{4}x+\dfrac{9}{2}\right)-\dfrac{11}{6}=0\)
\(\Leftrightarrow\dfrac{7}{16}:\left(\dfrac{1}{4}x+\dfrac{9}{2}\right)=\dfrac{11}{6}\)
\(\Leftrightarrow x\cdot\dfrac{1}{4}+\dfrac{9}{2}=\dfrac{11}{6}:\dfrac{7}{16}=\dfrac{88}{21}\)
\(\Leftrightarrow x\cdot\dfrac{1}{4}=\dfrac{88}{21}-\dfrac{9}{2}=-\dfrac{13}{42}\)
hay \(x=-\dfrac{26}{21}\)
giải các phương trình sau
1, \(\dfrac{-3}{x-4}-\dfrac{3-5x}{x^2-16}=\dfrac{1}{x+4}\)
2, \(\dfrac{3}{2+x}-\dfrac{x-1}{x^2-4}=\dfrac{2}{x-2}\)
3, \(\dfrac{x-5}{2x-3}-\dfrac{x}{2x+3}=\dfrac{1-6x}{4x^2-9}\)
1: Ta có: \(\dfrac{-3}{x-4}-\dfrac{3-5x}{x^2-16}=\dfrac{1}{x+4}\)
Suy ra: \(-3\left(x+4\right)-3+5x=x-4\)
\(\Leftrightarrow-3x-12-3+5x-x+4=0\)
\(\Leftrightarrow x=11\left(nhận\right)\)
2. ĐKXĐ: $x\neq \pm 2$
PT \(\Leftrightarrow \frac{3(x-2)}{(2+x)(x-2)}-\frac{x-1}{(x-2)(x+2)}=\frac{2(x+2)}{(x-2)(x+2)}\)
\(\Leftrightarrow \frac{3(x-2)-(x-1)}{(x-2)(x+2)}=\frac{2(x+2)}{(x-2)(x+2)}\)
\(\Rightarrow 3(x-2)-(x-1)=2(x+2)\)
\(\Leftrightarrow 2x-5=2x+4\Leftrightarrow 9=0\) (vô lý)
Vậy pt vô nghiệm
3. ĐKXĐ: $x\neq \pm \frac{3}{2}$
PT \(\Leftrightarrow \frac{(x-5)(2x+3)-x(2x-3)}{(2x-3)(2x+3)}=\frac{1-6x}{(2x-3)(2x+3)}\)
\(\Rightarrow (x-5)(2x+3)-x(2x-3)=1-6x\)
\(\Leftrightarrow 2x^2-7x-15-2x^2+3x+6x-1=0\)
\(\Leftrightarrow 2x-16=0\Leftrightarrow x=8\) (thỏa mãn)
Tìm x:
a) \(\dfrac{1}{3}.x+\dfrac{2}{5}\left(x-1\right)=0\)
b)\(-5.\left(x+\dfrac{1}{5}\right)-\dfrac{1}{2}.\left(x-\dfrac{2}{3}\right)=x\)
c)\(\left(x+\dfrac{1}{2}\right).\left(\dfrac{2}{3}-2x\right)=0\)
d)\(9.\left(3x+1\right)^2=16\)
a: =>1/3x+2/5x-2/5=0
=>11/15x-2/5=0
=>11/15x=2/5
=>x=2/5:11/15=2/5*15/11=30/55=6/11
b: =>-5x-1-1/2x+1/3=x
=>-11/2x-2/3-x=0
=>-13/2x=2/3
=>x=-2/3:13/2=-2/3*2/13=-4/39
c: (x+1/2)(2/3-2x)=0
=>x+1/2=0 hoặc 2/3-2x=0
=>x=1/3 hoặc x=-1/2
d: 9(3x+1)^2=16
=>(3x+1)^2=16/9
=>3x+1=4/3 hoặc 3x+1=-4/3
=>3x=1/3 hoặc 3x=-7/3
=>x=1/9 hoặc x=-7/9