Bài 5: So sánh các lũy thừa sau a) 3mũ21 và 2mũ31 b) 2mũ300 và 3mũ200 c) 32mũ9 và 18mũ13
so sánh 2mũ300 và 3mũ200
Ta có:
\(2^{300}=2^{3.100}=\left(2^3\right)^{100}=8^{100}\)
\(3^{200}=3^{2.100}=\left(3^2\right)^{100}=9^{100}\)
Vì \(8^{100}< 9^{100}\)
Nên \(2^{300}< 3^{200}\)
Ta có: \(2^{300}\)=\(2^{3.100}\)=(2\(^3\))\(^{100}\)=8\(^{100}\)
3\(^{200}\)=3\(^{2.100}\)=(3\(^2\))\(^{100}\)=9\(^{100}\)
Mà 8<9
⇒\(2^{300}\)<3\(^{200}\)
So sánh các lũy thừa sau
a)5^28 và 26^14
b)5^30 và 124^10
c)4^21 và 64^7
Mong mn giải giúp bài này
a) 528 = (52)14 = 2514
Vì 2514 < 2614 nên 528 < 2614
b) 530 = (53)10 = 12510
Vì 12510 > 12410 nên 530 > 12410
c) 421 = (43)7 = 647
Vì 647 = 647 nên 421 = 647
Mong mn ủng hộ mk
\(a,5^{28}=\left(5^2\right)^{14}=25^{14}< \)\(26^{14}\)
\(\Rightarrow5^{28}< 26^{14}\)
\(b,5^{30}=\left(5^3\right)^{10}=125^{10}>124^{10}\)
\(\Rightarrow5^{30}>124^{10}\)
\(c,4^{21}=\left(4^3\right)^7=64^7\)
\(\Rightarrow4^{21}=64^7\)
a) ta có: 528 = (52)14=2514 < 2614
=> 528<2614
b) ta có:530 = (53)10 = 12510>12410
=> 530 > 12410
c) ta có: 421 = (43)7 = 647
=> 421=647
1.So sánh các lũy thừa sau:
a, 27^81 và 81^27
b, 5^60 và 7^40
c, 99^50 và 11^102
d, 12^34567 và 34567^12
a/
\(27^{81}=\left(3^3\right)^{81}=3^{241}\)
\(81^{27}=\left(3^4\right)^{27}=3^{108}\)
\(\Rightarrow27^{81}=3^{241}>3^{108}=81^{27}\)
b/
\(5^{60}=\left(5^3\right)^{20}=125^{20}\)
\(7^{40}=\left(7^2\right)^{20}=49^{20}\)
\(\Rightarrow5^{60}=125^{20}>49^{20}=7^{40}\)
c/
\(11^{102}=\left(11^2\right)^{51}=121^{51}>121^{50}>99^{50}\)
d. So sánh a=12^34567 với b=(12^5)^12=12^60 => a>b
so sánh b=(12^5)^12 với c=34567^12 => b>c
Vậy a>c.
so sánh b=(12^5)^12=248832^12 với c=34567^12 => b>c
so sánh các lũy thừa sau a, 625 mũ 5 và 125 mũ 7 b, 3 mũ 2n và 2 mũ 3n
6255 và 1257
a, 6255 = (54)5 = 520
1257 = (53)7 = 521
Vì 520 < 521 nên 6255 < 1257
b, 32n = (32)n = 9n
23n = (23)n = 8n
9n > 8n ( nếu n > 0)
9n = 8n (nếu n = 0)
Vậy nếu n = 0 thì 23n = 32n
nếu n > 0 thì 32n > 23n
a) \(625^5=\left(5^4\right)^5=5^{20}\)
\(125^7=\left(5^3\right)^7=5^{21}>5^{20}\)
\(\Rightarrow625^5< 125^7\)
b) \(3^{2n}=9^n\)
\(2^{3n}=8^n< 9^n\)
\(\Rightarrow3^{2n}>2^{3n}\)
So sánh các lũy thừa sau:5^300 và 3^500
b.7.2^13 và 2^15
a) Ta có \(5^{300}=5^{3.100}=\left(5^3\right)^{100}=125^{100}\)
\(3^{500}=3^{5.100}=\left(3^5\right)^{100}=243^{100}\)
Vì 125 < 243 nên \(125^{100}< 243^{100}\)
Vậy \(5^{300}< 3^{500}\)
b) Ta có \(2^{15}=2^{13+2}=2^{13}.2^2=4.2^{13}\)
Vì 4<7 nên \(4.2^{13}< 7.2^{13}\)
Vậy \(2^{15}< 7.2^{13}\)
\(a)\)\(5^{300}=\left(5^3\right)^{100}=125^{100}\)
\(3^{500}=\left(3^5\right)^{100}=243^{100}\)
Vì \(125^{100}< 243^{100}\) nên \(5^{300}< 3^{500}\)
Vậy \(5^{300}< 3^{500}\)
\(b)\)\(2^{15}=2^{13+2}=2^{13}.2^2=4.2^{13}< 7.2^{13}\)
Vậy \(7.2^{13}>2^{15}\)
Chúc bạn học tốt ~
Bài 4. So sánh:
a) 2^30 và 3^20
b) 243^7 và 9^10 x 27^5
Bài 5. Tìm các số tự nhiên x, biết lũy thừa 52x −3 thỏa mãn các điều kiện
100 < 52x-3<59
Bài 4:
\(a,2^{30}=\left(2^3\right)^{10}=8^{10};3^{20}=\left(3^2\right)^{10}=9^{10}\\ Vì:8^{10}< 9^{10}\left(Vì:8< 9\right)\Rightarrow2^{30}< 3^{20}\\ b,9^{10}.27^5=\left(3^2\right)^{10}.\left(3^3\right)^5=3^{20}.3^{15}=3^{35}\\ 243^7=\left(3^5\right)^7=3^{35}\\ Vì:3^{35}=3^{35}\Rightarrow243^7=9^{10}.27^5\)
Bài 5:
100< 52x-3 < 59
Đề vầy hả em?
So sánh hai lũy thừa sau : A)8^28 và 15^21,B)5^91 và 11^59,C)33^19 và 15^23
a) Ta có: \(8^{28}=2^{84}=16^{21}\)
Mà \(16>15\Rightarrow16^{21}>15^{21}\Rightarrow8^{28}>15^{21}\)
Vậy...
b) \(5^{91}>5^{90}=125^{30}\) \(\left(1\right)\)
\(11^{59}< 11^{60}=121^{30}\) \(\left(2\right)\)
Lại có: \(125>121\) \(\left(3\right)\)
Từ (1), (2) và (3) suy ra \(5^{91}>11^{59}\)
So sánh các lũy thừa sau:
a)2^7 và 7^2
b)96^5 và 27^3
c)3^200 và 2^300
d)31^11 và 17^4
2^7>7^2
96^5>27^3
3^200>2^300
31^11>17^4
TÍCH CHO MÌNH 3 TÍCH ĐI !
So sánh các lũy thừa sau :
a) 12580 và 2548
b) 1030 và 2100
c) 291 và 535
2 thích cho người làm bài nhanh, đúng và có giải thích