Ta có:
\(2^{300}=2^{3.100}=\left(2^3\right)^{100}=8^{100}\)
\(3^{200}=3^{2.100}=\left(3^2\right)^{100}=9^{100}\)
Vì \(8^{100}< 9^{100}\)
Nên \(2^{300}< 3^{200}\)
Ta có: \(2^{300}\)=\(2^{3.100}\)=(2\(^3\))\(^{100}\)=8\(^{100}\)
3\(^{200}\)=3\(^{2.100}\)=(3\(^2\))\(^{100}\)=9\(^{100}\)
Mà 8<9
⇒\(2^{300}\)<3\(^{200}\)