CMR \(\frac{1}{2\sqrt{n+1}}
1) CMR \(\frac{1}{\sqrt{1.1999}}+\frac{1}{\sqrt{2.1998}}+\frac{1}{\sqrt{3.1997}}+...+\frac{1}{\sqrt{1999.1}}\ge1,999\)
2) CMR \(\frac{1}{1\sqrt{2}+2\sqrt{1}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+...+\frac{1}{95\sqrt{94}+94\sqrt{95}}< 1\)
3) CMR \(\frac{1}{2\sqrt{1}}+\frac{1}{3\sqrt{2}}+\frac{1}{4\sqrt{3}}+...+\frac{1}{\left(n+1\right)\sqrt{n}}< 2\)
4) CMR \(\sqrt{n}< \frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{n}}< 2\sqrt{n}\)
1, CMR: \(1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}\ge\frac{n}{n+1}\)
2, CMR: \(2\left(\sqrt{n-1}-1\right)< 1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{n}}\)
3, CMR: \(\frac{1}{2\sqrt{1}}+\frac{1}{3\sqrt{2}}+...+\frac{1}{\left(n+1\right)\sqrt{n}}< 2\)
Bài 1: CMR
Bài 2: CMR
CMR\(\frac{1}{2\sqrt{n+1}}< \sqrt{n+1}-\sqrt{n}\)với n thuộc N
Áp dụng CMR \(1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{2500}}< 100\)
Ta có :
\(\hept{\begin{cases}\frac{1}{2\sqrt{n+1}}< \frac{1}{\sqrt{n+1}+\sqrt{n}}=\frac{n+1-n}{\sqrt{n+1}+\sqrt{n}}\\\sqrt{n+1}-\sqrt{n}=\frac{\left(\sqrt{n+1}-\sqrt{n}\right)\left(\sqrt{n+1}+\sqrt{n}\right)}{\sqrt{n+1}+\sqrt{n}}=\frac{n+1-n}{\sqrt{n+1}+\sqrt{n}}\end{cases}}\forall n\in N\)
Suy ra : \(\frac{1}{2\sqrt{n+1}}< \sqrt{n+1}-\sqrt{n}\)
Đặt \(M=1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{2499}}+\frac{1}{\sqrt{2500}}\)
\(\Leftrightarrow\frac{1}{2}M=\frac{1}{2\sqrt{2500}}+\frac{1}{2\sqrt{2499}}+...+\frac{1}{2\sqrt{3}}+\frac{1}{2\sqrt{2}}+\frac{1}{2}\)
Áp dụng BĐT , ta có :
\(\frac{1}{2}M< \sqrt{2500}-\sqrt{2499}+\sqrt{2499}-\sqrt{2498}+...+\sqrt{3}-\sqrt{2}+\sqrt{2}-\sqrt{1}+\frac{1}{2}\)
\(\Rightarrow\frac{1}{2}M< \sqrt{2500}-\sqrt{1}+\frac{1}{2}=50-\frac{1}{2}< 50\)
\(\Rightarrow M< 100\)
CMR \(2\left(\sqrt{n+1}-\sqrt{n}\right)< \frac{1}{\sqrt{n}}< 2\left(\sqrt{n}-\sqrt{n-1}\right)\)với n thuộc N*
Áp dụng cho S=\(1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{100}}\)
CMR 18<S<19
CMR
\(\frac{43}{44}< \frac{1}{2\sqrt{1}+1\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+...+\frac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}\)
Bài 1: CMR
\(\frac{1}{2\sqrt{1}}+\frac{1}{3\sqrt{2}}+\frac{1}{4\sqrt{3}}+........+\frac{1}{\left(n+1\right)\sqrt{n}}>2,n\varepsilonℕ^∗\)
Bài 2: Cho S= \(\frac{1}{3\left(1+\sqrt{2}\right)}+\frac{1}{3\left(\sqrt{2}+\sqrt{3}\right)}+...+\frac{1}{\left(2n+1\right)\left(\sqrt{n}+\sqrt{n+1}\right)}\)
CMR S<\(\frac{1}{2}\)
cmr với mọi n thuộc N* \(1+\frac{1}{2\sqrt{2}}+\frac{1}{3\sqrt{3}}+...+\frac{1}{n\sqrt{n}}< 2\sqrt{2}\)
Cmr: S = 1 + \(\sqrt{\frac{2+1}{2}}\)+ \(\sqrt[3]{\frac{3+1}{3}}\)+ ... + \(\sqrt[n]{\frac{n+1}{n}}\)< n + 1 ( Gợi ý: Cmr \(\sqrt[n]{\frac{n+1}{n}}\)< 1+\(\dfrac{1}{k^2}\) )