Những câu hỏi liên quan
H24
Xem chi tiết
TD
31 tháng 12 2017 lúc 16:41

gọi d \(\in\)BC ( 2n + 1, 6n + 5 ) thì 2n + 1 \(⋮\)d ; 6n + 5 \(⋮\)d

Do đó ( 6n + 5 ) - 3 . ( 2n + 1 ) \(⋮\)\(\Rightarrow\)\(⋮\)\(\Rightarrow\)\(\in\){ 1 ; 2 }

d là ước của số lẻ 2n + 1 nên d \(\ne\)

Vậy d = 1 

Do đó ( 2n + 1 ; 6n + 5 ) = 1

Bình luận (0)
VT
25 tháng 3 2021 lúc 19:46

chu pa pi mu nhà nhố

Bình luận (0)
 Khách vãng lai đã xóa
PV
Xem chi tiết
H1
30 tháng 7 2017 lúc 18:03

khó z mà vẫn đăg

Bình luận (0)
LA
28 tháng 11 2017 lúc 19:10

Gọi ƯCLN( 2n+1; 6n+5) là d ( d thuộc n sao)
Ta có: 2n+1 chia hết d

           6n+5 chia hết d

= 3.(2n+1) chia hết d

6n+5 chia hết d

=6n+3 chia hết d

6n+5 chia hết d

(6n+5)-(6n+3) chia hết d

=2 chia hết d

d=1;2

Mà 6n+5 không chia hết 2; suy ra d=1

Vậy 6n+5 và 2n+1 nguyên tố cùng nhau

kick hộ mình nhé

Bình luận (0)
NL
Xem chi tiết
NT
23 tháng 11 2015 lúc 14:32

gọi d>0 là ước dung của 2n+1 và 6n+5

d là ước số 3(2n+1)=6n+3

(6n+5)_(6n+3)=2

suy ra d là ước của số lẻ :2n+1 suy ra d=1

vậy 2n+1 và 6n+5 là 2 nguyên tố cùng nhau

**** nhé Thanh Lộc thông minh

Bình luận (0)
VV
Xem chi tiết
ND
6 tháng 12 2020 lúc 9:24

Làm mẫu 2 phần nhé, 2 phần còn lại tương tự, ez lắm!

1) G/s \(\left(n+1;n+2\right)=d\)

\(\Rightarrow\hept{\begin{cases}\left(n+1\right)⋮d\\\left(n+2\right)⋮d\end{cases}}\Rightarrow\left(n+2\right)-\left(n+1\right)⋮d\)

\(\Rightarrow1⋮d\Rightarrow d=1\)

=> n+1 và n+2 NTCN

3) G/s: \(\left(2n+1;n+1\right)=d\Rightarrow\hept{\begin{cases}\left(2n+1\right)⋮d\\\left(n+1\right)⋮d\end{cases}}\Leftrightarrow\hept{\begin{cases}\left(2n+1\right)⋮d\\2\left(n+1\right)⋮d\end{cases}}\)

\(\Rightarrow2\left(n+1\right)-\left(2n+1\right)⋮d\)

\(\Rightarrow1⋮d\Rightarrow d=1\)

=> đpcm

Bình luận (0)
 Khách vãng lai đã xóa
TM
Xem chi tiết
NT
27 tháng 10 2023 lúc 23:11

a: Gọi d=ƯCLN(6n+5;2n+1)

=>\(\left\{{}\begin{matrix}6n+5⋮d\\2n+1⋮d\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}6n+5⋮d\\6n+3⋮d\end{matrix}\right.\Leftrightarrow6n+5-6n-3⋮d\)

=>\(2⋮d\)

mà 2n+1 là số lẻ

nên d=1

=>2n+1 và 6n+5 là hai số nguyên tố cùng nhau

b: Gọi d=ƯCLN(3n+2;5n+3)

=>\(\left\{{}\begin{matrix}3n+2⋮d\\5n+3⋮d\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}15n+10⋮d\\15n+9⋮d\end{matrix}\right.\)

=>\(15n+10-15n-9⋮d\)

=>\(1⋮d\)

=>d=1

=>3n+2 và 5n+3 là hai số nguyên tố cùng nhau

Bình luận (0)
KJ
Xem chi tiết
VT
25 tháng 3 2021 lúc 19:48

đừng để anh nóng hơi mệt đấy

Bình luận (0)
 Khách vãng lai đã xóa
NS
Xem chi tiết
NM
Xem chi tiết
NM
26 tháng 12 2022 lúc 9:38

Gọi d\inƯCLN\left(2n+1;6n+5\right) nên ta có :

2n+1⋮d và 6n+5⋮d

\Leftrightarrow3\left(2n+1\right)⋮d và 6n+5⋮d

\Leftrightarrow6n+3⋮d và 6n+5⋮d

\Rightarrow\left(6n+5\right)-\left(6n+3\right)⋮d

\Rightarrow2⋮d\Rightarrow d=2

Mà 2n+1;6n+5 là các số lẻ nên không thể có ước là 2

\Rightarrow d=1

\Rightarrow2n+1 và 6n+5 là nguyên tố cùng nhau

Bình luận (0)
DT
Xem chi tiết