cho n thuộc N , chứng tỏ n2 + n +1 ko chia hết cho 4 và ko chia hết cho 5.
1. Cho n thuộc N, CMR n2+n+1 ko chia hết cho 4 và ko chia hết cho 5.
Gọi a = n2 + n +1.
chứng tỏ rằng a ko chia hết cho 2
a ko chia hết cho 5
Gọi A = n2 + n +1.Chứng tỏ rằng:
a ko chia hết cho 2
a ko chia hết cho 5
a) \(n^2+n+1=n\left(n+1\right)+1\)
Ta có \(n\left(n+1\right)⋮2\)vì \(n\left(n+1\right)\)là tích 2 số TN liên tiếp . Do đó \(n\left(n+1\right)+1\)không chia hết cho 2
b) \(n^2+n+1=n\left(n+1\right)+1\)
Ta có \(n\left(n+1\right)\)l là tích của 2 số TN liên tiếp nên tận cùng bằng 0,2,6 . Suy ra \(n\left(n+1\right)\)tận cùng bằng 1,3,7 không chia hết cho 5
cho n thuộc N chứng mink rằng n2+n+1 ko chia hết cho 4 và ko chia hết cho 5
+) n^2 + n + 1 = n(n + 1) + 1
Vì n(n + 1) là tích 2 số tự nhiên liên tiếp => n(n + 1) chia hết cho 2 => n(n + 1) + 1 không chia hết cho 2 => n(n + 1) + 1 không chia hết cho 4
hay n^2 + n + 1 không chia hết cho 4
+) Tích 2 số tự nhiên liên tiếp có CSTC là 0; 2; 6
=> n(n + 1) có CSTC là 0; 2; 6
=> n(n + 1) + 1 có CSTC là 1; 3; 7
hay n^2 + n + 1 có CSTC là 1; 3; 7
=> n^2 + n + 1 không chia hết cho 5
Gọi A= n^2 + n+1 ( n thuộc N) Chứng tỏ rằng:
a) A ko chia hết cho 2
b) A ko chia hết cho 5
a) A = n2 + n + 1
A = n.(n + 1) + 1
Vì n.(n + 1) là tích 2 số tự nhiên liên tiếp nên \(n.\left(n+1\right)⋮2\)
Mà \(1⋮̸2\)
Do đó, \(A⋮2̸\)
b) A = n.(n + 1) + 1
Vì n.(n + 1) là tích 2 số tự nhiên liên tiếp nên n.(n + 1) chỉ có thể tận cùng là 0; 2; 6
Do đó A chỉ có thể tận cùng là 1; 3; 7, không chia hết cho 5 (đpcm)
gọi A=n2+n+1 với n thuộc N.Chứng tỏ rằng A ko chia hết cho 2 và ko chia hết cho 5.
\(A=n^2+n+1\)
\(=n\left(n+1\right)+1\)
Vì n(n+1) là tích của hai số tự nhiên liên liếp nên có 1 số chẵn
nên n(n+1) là số chẵn.Suy ra:n(n+1)+1 là số lẻ và ko chia hết cho 2
Vì n(n+1) chỉ có tân còn là:0,2,6 nên n(n+1)+1 chỉ có tận cùng là:1,3,7 ko chia hết cho 5
chứng tỏ :
1) 15a + 140 chia hết cho 5 vớ a thuộc N
2) 39a + 50 ko chia hết cho 13 với a thuộc N
3) 146 + x chia hết cho 2
4) 265 + x ko chia hết cho 2
5)318 + 124 + 60 + x ko chia hết cho 2
6)45 + 63 +x chia hết cho 3
ai nhanh mik tick !!! mik đag cần gấp !!!! ( có trình bày nha )
1/ 15a +140 = 5. (3a +28) \(\Rightarrow\)biểu thức chia hết cho 5 với mọi a thuộc N
2/ 39a + 50 = 39a + 39 + 11 = 13 (3a + 3) + 11.
Ta có: 13 (3a + 3) chia hết cho 13
11 không chia hết cho 13
\(\Rightarrow\)Biểu thức trên không chia hết cho 13.
Câu 3, 4, 5, 6 đề không rõ nên mình không làm nhé. Bạn phải đặt điều kiện cho x nữa để xác định biểu thức đó chia hết hay không.
chứng tỏ :
1) 15a + 140 chia hết cho 5 vớ a thuộc N
2) 39a + 50 ko chia hết cho 13 với a thuộc N
3) 146 + x chia hết cho 2
4) 265 + x ko chia hết cho 2
5)318 + 124 + 60 + x ko chia hết cho 2
6)45 + 63 +x chia hết cho 3
ai nhanh mik tick !!! mik đag cần gấp !!!! ( có trình bày nha )
Chứng minh rằng: A=n2+n+1 ko chia hết cho 2 và 5,∀ n∈N
n 2+n+1 = n(n + 1) +1.
Vì n(n+1) là tích của hai số tự nhiên liên tiếp nên có chữ số tận cùng là 0, 2, 6
Do đó n(n+1) + 1 có chữ số tận cùng là 1, 3, 7.
Vì 1, 3, 7 không chia hết cho 2 và 5 nên n(n+1) + 1 không chia hết cho 2 và 5
Vậy n 2+n+1 không chia hết cho 2 và 5
a) n2+n+1=n(n+1)+1
Ta có n(n+1)⋮2vì n(n+1)n(n+1)là tích 2 số TN liên tiếp . Do đó n(n+1)+1không chia hết cho 2
- n2+n+1=n(n+1)+1
Ta có n(n+1)l là tích của 2 số TN liên tiếp nên tận cùng bằng 0,2,6 . Suy ra n(n+1)tận cùng bằng 1,3,7 không chia hết cho 5
tham khao
https://olm.vn/hoi-dap/detail/93364253.html