Những câu hỏi liên quan
HL
Xem chi tiết
TT
13 tháng 11 2015 lúc 21:12

* Nếu \(x>\frac{1}{3}\)

=> \(\frac{1}{3}-x<0\Rightarrow\left(x+\frac{1}{2}\right)\left(\frac{1}{3}-x\right)<0\)(loại)

* Nếu \(x=\frac{1}{3}\)

=> \(\frac{1}{3}-\frac{1}{3}=0\Rightarrow\left(x+\frac{1}{2}\right)\left(\frac{1}{3}-x\right)=0\)(chọn)

* Nếu \(x<\frac{1}{3}\)

=> \(\frac{1}{3}-x>0\Rightarrow\left(x+\frac{1}{2}\right)\left(\frac{1}{3}-x\right)>0\)(chọn)

Vậy để \(\left(x+\frac{1}{2}\right)\left(\frac{1}{3}-x\right)\ge0\) thì \(x\le\frac{1}{3}\).

Bình luận (0)
HL
Xem chi tiết
NL
Xem chi tiết
NT
31 tháng 7 2020 lúc 21:36

a) Ta có: \(A=\left(\frac{1-x\sqrt{x}}{1-\sqrt{x}}+\sqrt{x}\right)\cdot\left(\frac{1-\sqrt{x}}{1-x}\right)^2\)

\(=\left(\frac{1-x\sqrt{x}+\sqrt{x}\left(1-\sqrt{x}\right)}{1-\sqrt{x}}\right)\cdot\left(\frac{1}{1+\sqrt{x}}\right)^2\)

\(=\frac{1-x\sqrt{x}+\sqrt{x}-x}{1-\sqrt{x}}\cdot\frac{1}{\left(1+\sqrt{x}\right)^2}\)

\(=\frac{-\left(x-1\right)\left(-1-\sqrt{x}\right)}{1-\sqrt{x}}\cdot\frac{1}{\left(1+\sqrt{x}\right)^2}\)

\(=\frac{\left(1+\sqrt{x}\right)\cdot\left(-1-\sqrt{x}\right)}{\left(1+\sqrt{x}\right)^2}\)

\(=\frac{-1\cdot\left(1+\sqrt{x}\right)^2}{\left(1+\sqrt{x}\right)^2}=-1\)

Bình luận (0)
BN
Xem chi tiết
ZZ
3 tháng 9 2020 lúc 20:36

:V

Câu đầu cho x > 0 thì dễ hơn ...... 

Sử dụng BĐT AM - GM ta dễ có:\(D=\sqrt{x}+\frac{9}{\sqrt{x}+2}=\sqrt{x}+2+\frac{9}{\sqrt{x}+2}-2\ge2\sqrt{\left(\sqrt{x}+2\right)\cdot\frac{9}{\sqrt{x}+2}}-2=4\)

Đẳng thức xảy ra tại x=1

\(E=\frac{x+1}{\sqrt{x}}\ge\frac{2\sqrt{x}}{\sqrt{x}}=2\) Đẳng thức xảy ra tại x=1

Làm 2 cái thôi còn lại tương tự bạn nhé :) 

Bình luận (0)
 Khách vãng lai đã xóa
TA
3 tháng 9 2020 lúc 20:48

+ Ta có: \(D=\sqrt{x}+\frac{9}{\sqrt{x}+2}\)

       \(D=\sqrt{x}+2+\frac{9}{\sqrt{x}+2}-2\)

   Áp dụng bất đẳng thức Cô-si cho phương trình \(\sqrt{x}+2+\frac{9}{\sqrt{x}+2}\) ta có: 

         \(\sqrt{x}+2+\frac{9}{\sqrt{x}+2}\ge\sqrt{\left(\sqrt{x}+2\right).\left(\frac{9}{\sqrt{x}+2}\right)}=\sqrt{9}=3\)

         \(\Rightarrow\)\(D\ge3-2=1\)

   Dấu bằng xảy ra khi và chỉ khi: \(\sqrt{x+2}=\frac{9}{\sqrt{x}+2}\)

                                               \(\Leftrightarrow\left(\sqrt{x}+2\right)^2=9\)

                                               \(\Leftrightarrow\sqrt{x}+2=\pm3\)

                                               \(\Leftrightarrow\orbr{\begin{cases}\sqrt{x}+2=-3\\\sqrt{x}+2=3\end{cases}}\)

                                               \(\Leftrightarrow\orbr{\begin{cases}\sqrt{x}=-5\left(L\right)\\\sqrt{x}=1\end{cases}}\)

                                               \(\Leftrightarrow x=\pm1\)

 Vậy \(S=\left\{\pm1\right\}\)

Bình luận (0)
 Khách vãng lai đã xóa
VD
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
TL
2 tháng 8 2016 lúc 13:27

\(\frac{1}{\left(x-1\right)x}+\frac{1}{\left(x-2\right)\left(x-1\right)}+\frac{1}{\left(x-3\right)\left(x-2\right)}+\frac{1}{\left(x-4\right)\left(x-3\right)}=\frac{x}{x^2-4x}\)

\(\Leftrightarrow\)\(\frac{1}{x-1}-\frac{1}{x}+\frac{1}{x-2}-\frac{1}{x-1}+\frac{1}{x-3}-\frac{1}{x-2}+\frac{1}{x-4}-\frac{1}{x-3}=\frac{x}{x\left(x-4\right)}\)

\(\Leftrightarrow\)\(-\frac{1}{x}+\frac{1}{x-4}=\frac{1}{x-4}\)

\(\Leftrightarrow\)\(\frac{-\left(x-4\right)+x}{x\left(x-4\right)}=\frac{x}{x\left(x-4\right)}\)

\(\Leftrightarrow\)\(4-x+x=x\)

\(\Leftrightarrow x=4\)

Bình luận (0)
NB
12 tháng 8 2016 lúc 15:02

lo nói mk làm cách lâu chứ m cx hỏi người khác!!!!!!!!!!! 

 

Bình luận (1)
NL
Xem chi tiết
NH
Xem chi tiết
NH
14 tháng 10 2016 lúc 0:47

Mong các bạn và thầy cô giải giùm ạ!

Bình luận (0)
NH
14 tháng 10 2017 lúc 20:29

Đặt \(t=\left(x+\frac{1}{x}\right)^2\)\(\Rightarrow\)\(x^2+\frac{1}{x^2}=t-2\)điều kiện t>=0,x # 0

Phương trình trở thành

8t +4(t-2)- 4(t-2)2t =(x+4)2

8t + 4t2 - 16t + 16 -4t3 + 16t2 - 16t=(x+4)2

-4t+ 20t-24t=x2 +8x

-4t(t2 -5t +6)=x(x+8)

-4t(t-2)(t-3)=x(x+8)

Mình chỉ giúp dược tới đó

Bình luận (0)