Cho tam giác ABC có góc A = 120o, BC = a , AC= b, AB= c. Chứng minh rằng a^2 = b^2 +c^2+bc
cho tam giác ABC có góc A = 120 , BC=a , AC= b , AB =c,
chứng minh rằng
a2 = b2+c2+bc
Ta có: \(\widehat{CAB}=120^o\Rightarrow\widehat{CAD}=60^o\)
\(\Rightarrow\Delta DAC\) là nửa tam giác đều.
\(\Rightarrow AD=\frac{AC}{2}=\frac{b}{2}\)
Xét \(\Delta CDB\) vuông tại D có:
\(CB^2=CD^2+DB^2=\left(AC^2-AD^2\right)+\left(AD+AB\right)^2\)
\(\Leftrightarrow CB^2=AC^2-AD^2+AD^2+2AD.AB+AB^2=AC^2+2AB.\frac{AC}{2}+AB^2\)
\(\Leftrightarrow a^2=b^2+c^2+bc\)
Bài 2: Cho tam giác ABC có B=C . Tia phân giác của góc A cắt BC tại D. Chứng minh rằng: a) ADB = ADC b) AB = AC c) AD là trung trực của BC
cho tam giác abc có bc=a ac=b ab=c
a/chứng minh rằng nếu góc a = 2 lần góc b thì a^2=b^2+bc và ngược lại
b/tính độ dài các cạnh của tam giác abc thỏa điều kiện trên biết độ dài ba cạnh tam giác là 3 số tự nhiên liên tiếp
Cho tam giác ABC có góc A=120 độ, BC =a, AC =b, AB =c.
Chứng minh rằng \(a^2=b^2+c^2+bc\)
Cho tam giác ABC có BC = a, AC = b, AB = c. Chứng minh rằng :
a) Nếu góc A = 30 độ thì a^2 = b^2 + c^2 - bc\(\sqrt{3}\)
b) Nếu góc A = 60 độ thì a^2 = b^2 + c^2 - bc
cho tam giác ABC có góc a=120độ BC=a,AC=b.
AB=c chứng minh a^2=b^2+c^2+bc
Cho tam giác ABC, có góc B lớn hơn 90 độ. AB = 1⁄2 AC. Chứng minh rằng:
a) BC > AB
b) Góc A nhỏ hơn 2 lần góc C.
cho tam giác ABC có góc A bằng 120 độ, BC = a, AC = b, AB =c.
Chứng minh rằng: \(a^2=b^2+c^2+bc\)
Kẻ CE | AB.
Ta có \(\Delta ACE\) vuông tại E có góc A = 60o.
\(\Rightarrow AE=\frac{1}{2}AC=\frac{b}{2}\)
\(CE=AC^2-AE^2=\frac{\sqrt{3}}{2}b\)
Xét \(\Delta EBC\) vuông tại E có :
\(EB=c+\frac{b}{2}\)
\(EC=\frac{\sqrt{3}}{2}b\)
\(\Rightarrow a^2=BC^2=EB^2+EC^2=\left(c+\frac{b}{2}\right)^2+\left(\frac{\sqrt{3}}{2}b\right)^2=b^2+c^2+bc\)
Vậy ...
- Vẽ CD vuông góc tia AB tại D.
Ta thấy: \(\widehat{BAC}=120^o\Rightarrow\widehat{CAD}=60^o\left(p.g\right)\)
Tam giác CAD là nửa tam giác đều
\(\Rightarrow AD=\frac{1}{2}AC=\frac{1}{2}AB\)
- Tam giác CDB vuông tại D
\(\Rightarrow BC^2=BD^2+CD^2=BD^2+CD^2...\Rightarrow a^2=\left(AB+AD\right)^2+\left(AC-AD\right)^2\)
\(\Rightarrow AB^2+2AB.BD+AD^2+AC^2-AD^2\Rightarrow a^2=b^2+c^2+2c.AD=b^2+c^2+bc\left(AD=\frac{1}{2}b\right)\)
Áp dụng định lí hàm cos ta có :
\(AC^2=AB^2+AC^2-2AB.AC.\cos B\)
\(\Rightarrow12^2+6^2-2.12.6.\left(-\frac{1}{2}\right)=252\Rightarrow AC=\sqrt{252}\)
Vì BD là phân giác của góc B nên theo tính chất ta có:
\(\frac{AD}{BC}=\frac{AB}{BC}=\frac{6}{12}=\frac{1}{2}\)
\(\Rightarrow DC=2AD;AC=\sqrt{252}\Rightarrow AD=\frac{1}{3}\sqrt{252}\)
Áp dụng định lý hàm số COS đồi với tam giác ABD có:
\(AD^2=AB^2+BD^2-2AB.BD.cosB\)
\(\Rightarrow\left(\frac{1}{3}\sqrt{252}\right)^2=6^2.BD^2.\cos B\)
\(\Rightarrow BD^2-6BD+8=0\)
\(\Rightarrow BD=4;BD=2\)
Mà theo điều kiện bài => BD = 4 (cm)
Trên đây là bài giải với ĐK: BD là phân giác trong.
còn nếu BD là phân giác ngoài thì tỉ lệ: \(\frac{AC}{AD}=\frac{AB}{BC}\Rightarrow BD=8\left(cm\right)\)
Cho tam giác ABC có a= BC, b= AC ,c=AB A,B,C là 3 góc của 1 tam giác a2=b2+bc. Chứng minh: A= 2B