LY

cho tam giác ABC có góc A bằng 120 độ, BC = a, AC = b, AB =c.
Chứng minh rằng: \(a^2=b^2+c^2+bc\)

 
H24
16 tháng 8 2016 lúc 17:08

A B C E a b c

Kẻ CE  |  AB.

Ta có \(\Delta ACE\) vuông tại E có góc A = 60o.

\(\Rightarrow AE=\frac{1}{2}AC=\frac{b}{2}\)

\(CE=AC^2-AE^2=\frac{\sqrt{3}}{2}b\)

Xét \(\Delta EBC\) vuông tại E có :

\(EB=c+\frac{b}{2}\)

\(EC=\frac{\sqrt{3}}{2}b\)

\(\Rightarrow a^2=BC^2=EB^2+EC^2=\left(c+\frac{b}{2}\right)^2+\left(\frac{\sqrt{3}}{2}b\right)^2=b^2+c^2+bc\)

Vậy ...

Bình luận (0)
LH
16 tháng 8 2016 lúc 17:13

[​IMG]- Vẽ CD vuông góc tia AB tại D. 

Ta thấy: \(\widehat{BAC}=120^o\Rightarrow\widehat{CAD}=60^o\left(p.g\right)\)

Tam giác CAD là nửa tam giác đều 

\(\Rightarrow AD=\frac{1}{2}AC=\frac{1}{2}AB\)

- Tam giác CDB vuông tại D 

\(\Rightarrow BC^2=BD^2+CD^2=BD^2+CD^2...\Rightarrow a^2=\left(AB+AD\right)^2+\left(AC-AD\right)^2\)

\(\Rightarrow AB^2+2AB.BD+AD^2+AC^2-AD^2\Rightarrow a^2=b^2+c^2+2c.AD=b^2+c^2+bc\left(AD=\frac{1}{2}b\right)\)

Bình luận (0)
LH
16 tháng 8 2016 lúc 17:06

[​IMG]Áp dụng định lí hàm cos ta có :

\(AC^2=AB^2+AC^2-2AB.AC.\cos B\)

\(\Rightarrow12^2+6^2-2.12.6.\left(-\frac{1}{2}\right)=252\Rightarrow AC=\sqrt{252}\)

Vì BD là phân giác của góc B nên theo tính chất ta có: 

\(\frac{AD}{BC}=\frac{AB}{BC}=\frac{6}{12}=\frac{1}{2}\)

\(\Rightarrow DC=2AD;AC=\sqrt{252}\Rightarrow AD=\frac{1}{3}\sqrt{252}\)

Áp dụng định lý hàm số COS đồi với tam giác ABD có: 

\(AD^2=AB^2+BD^2-2AB.BD.cosB\)

\(\Rightarrow\left(\frac{1}{3}\sqrt{252}\right)^2=6^2.BD^2.\cos B\)

\(\Rightarrow BD^2-6BD+8=0\)

\(\Rightarrow BD=4;BD=2\)

Mà theo điều kiện bài => BD = 4 (cm)

Trên đây là bài giải với ĐK: BD là phân giác trong. 
còn nếu BD là phân giác ngoài thì tỉ lệ: \(\frac{AC}{AD}=\frac{AB}{BC}\Rightarrow BD=8\left(cm\right)\)

Bình luận (0)
LH
16 tháng 8 2016 lúc 17:14

phần trước mình chỉ giảng thêm nếu như đề có kêu tính nhé!!!!

Bình luận (0)
H24
16 tháng 8 2016 lúc 17:21

Èo, Hạo copy :v nhonhung

Bình luận (1)
LF
16 tháng 8 2016 lúc 17:51

thg Hạo pytago còn ko vững lại còn đòi cos với tan

Bình luận (4)
LY
16 tháng 8 2016 lúc 19:38

cám ơn các bạn đã giải giúp mk vui

Bình luận (0)

Các câu hỏi tương tự
HX
Xem chi tiết
HX
Xem chi tiết
HX
Xem chi tiết
HX
Xem chi tiết
VH
Xem chi tiết
WR
Xem chi tiết
NH
Xem chi tiết
NH
Xem chi tiết
WR
Xem chi tiết