Tìm các cặp số nguyên thỏa mãn đẳng thức : 2xy+x+y=11
Tìm các cặp số nguyên ( x;y ) thỏa mãn đẳng thức : x - y + 2xy = 3
Tìm các cặp số nguyên (x;y) thỏa mãn đẳng thức sau:
(2x - n)(4x2 + 2xy + y2) + (2x + y)(4x2 - 2xy + y2) - 16x(x2 - y) = 32
Ta có \(\left(2x-y\right)\left(4x^2+2xy+y^2\right)+\left(2x+y\right)\left(4x^2-2xy+y^2\right)-16x\left(x^2-y\right)=32\)
<=> \(\left(2x\right)^3-y^3+\left(2x\right)^3+y^3-16x^3+16xy=32\)
<=> \(8x^3+8x^3-16x^3+16xy=32\)
<=> \(16xy=32\)
<=> \(xy=2\)
=> x, y cùng dấu (vì \(xy>0\))
Vậy có 4 cặp số nguyên (x, y) thoả mãn đẳng thức trên: (1; 2); (2; 1); (-1; -2); (-2; -1)
Tìm các cặp số nguyên (x; y) thỏa mãn đẳng thức: \(x^2y+3x^2-4y=15\)
Tìm tất cả các cặp số nguyên (x;y) thỏa mãn đẳng thức: y(x-1)=x^2+2
Từ phương trình \(y\left(x-1\right)=x^2+2\Rightarrow x^2+2\vdots x-1\to x^2-1+3\vdots x-1\to3\vdots x-1\to x-1=\pm1,\pm3.\)
Do vậy mà \(x=2,0,4,-2\). Tương ứng ta có \(y=6,-2,6,-2\)
Vậy các nghiệm nguyên của phương trình \(\left(x,y\right)=\left(2,6\right),\left(0,-2\right),\left(4,6\right),\left(-2,-2\right).\)
Tìm cặp số nguyên (x;y) thỏa mãn đẳng thức:
\(\left(2x-y\right)\left(4x^2+2xy+y^2\right)+\left(2x+y\right)\left(4x^2-2xy+y^2\right)-16x\left(x^2-y\right)=32\)
tìm các cặp số nguyên x y thỏa mãn 2xy+14x+y=33
Gợi ý:
\(2xy+14x+y=33\)
\(\Rightarrow2x\left(y+7\right)+y+7=33+7\)
\(\Rightarrow\left(2x+1\right)\left(y+7\right)=40\)
\(\Rightarrow\left(2x+1;y+7\right)\inƯ\left(40\right)=\left\{\pm1;\pm2;\pm4;\pm5;\pm8;\pm10;\pm20;\pm40\right\}\)
Đến đây thì bạn làm tiếp nhé!
tìm các cặp số nguyên x y thỏa mãn 2xy+14x+y=33
=>2x(y+7)+y+7=40
=>(y+7)(2x+1)=40
mà x,y nguyên
nên \(\left(2x+1;y+7\right)\in\left\{\left(1;40\right);\left(5;8\right);\left(-1;-40\right);\left(-5;-8\right)\right\}\)
=>\(\left(x,y\right)\in\left\{\left(0;33\right);\left(2;1\right);\left(-1;-47\right);\left(-3;-15\right)\right\}\)
tìm các cặp số nguyên x y thỏa mãn 2xy+14x+y=33
Tìm cặp (x,y) thỏa mãn đẳng thức: 5x^2 +y^2 +2xy-8x-4y+5=0