Những câu hỏi liên quan
TM
Xem chi tiết
PH
8 tháng 11 2018 lúc 18:12

\(A=\frac{x^2}{\left(x-y\right)\left(x-z\right)}+\frac{y^2}{\left(y-x\right)\left(y-z\right)}+\frac{z^2}{\left(z-x\right)\left(z-y\right)}\)

\(=\frac{x^2}{\left(x-y\right)\left(x-z\right)}-\frac{y^2}{\left(x-y\right)\left(y-z\right)}+\frac{z^2}{\left(x-z\right)\left(y-z\right)}\)

\(=\frac{x^2\left(y-z\right)-y^2\left(x-z\right)+z^2\left(x-y\right)}{\left(x-y\right)\left(x-z\right)\left(y-z\right)}\)

     \(x^2\left(y-z\right)-y^2\left(x-z\right)+z^2\left(x-y\right)\)

\(=x^2y-x^2z-xy^2+y^2z+z^2\left(x-y\right)\)

\(=xy\left(x-y\right)-z\left(x-y\right)\left(x+y\right)+z^2\left(x-y\right)\)

\(=\left(x-y\right)\left[xy-zx-zy+z^2\right]\)

\(=\left(x-y\right)\left[x\left(y-z\right)-z\left(y-z\right)\right]=\left(x-y\right)\left(x-z\right)\left(y-z\right)\)

Vậy A = 1

Bình luận (0)
TM
Xem chi tiết
PH
8 tháng 11 2018 lúc 12:25

\(\left(x-1\right)^2\ge0\Rightarrow x^2-2x+1\ge0\Rightarrow x^2+1\ge2x\)

\(\left(y-2\right)^2\ge0\Rightarrow y^2-4y+4\ge0\Rightarrow y^2+4\ge4y\)

\(\left(z-3\right)^2\ge0\Rightarrow z^2-6z+9\ge0\Rightarrow z^2+9\ge6z\)

Do đó: \(\left(x^2+1\right)\left(y^2+4\right)\left(z^2+9\right)\ge2x.4y.6z=48xyz\)

Dấu "=" xảy ra khI: \(\hept{\begin{cases}x-1=0\\y-2=0\\z-3=0\end{cases}\Rightarrow\hept{\begin{cases}x=1\\y=2\\z=3\end{cases}}}\)

Vậy \(C=\frac{1^3+2^3+3^3}{\left(1+2+3\right)^3}=\frac{6^2}{6^3}=\frac{1}{6}\)

Chúc bạn học tốt.

Bình luận (0)
PP
Xem chi tiết
LM
Xem chi tiết
PL
Xem chi tiết
TC
4 tháng 8 2021 lúc 21:10

undefined

Bình luận (2)
ND
11 tháng 4 2024 lúc 21:42

kẻ lười biếng nạp card, đi ô tô

Bình luận (0)
AN
Xem chi tiết
DN
Xem chi tiết
AH
25 tháng 1 2021 lúc 10:48

Lời giải:Vì $x^2+y^2+z^2=2$ nên:

$P=\frac{x^2+y^2+z^2}{x^2+y^2}+\frac{x^2+y^2+z^2}{y^2+z^2}+\frac{x^2+y^2+z^2}{z^2+x^2}-\frac{x^3+y^3+z^3}{2xyz}$

$=3+\frac{x^2}{y^2+z^2}+\frac{y^2}{x^2+z^2}+\frac{z^2}{x^2+y^2}-\frac{x^3+y^3+z^3}{2xyz}$

$\leq 3+\frac{x^2}{2yz}+\frac{y^2}{2xz}+\frac{z^2}{2xy}-\frac{x^3+y^3+z^3}{2xyz}$

(theo BĐT AM-GM)

$=3+\frac{x^3+y^3+z^3}{2xyz}-\frac{x^3+y^3+z^3}{2xyz}=3$

Vậy $P_{\max}=3$

Dấu "=" xảy ra khi $x=y=z=\sqrt{\frac{2}{3}}$

 

Bình luận (0)
KT
Xem chi tiết
DH
11 tháng 8 2021 lúc 20:55

\(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{1}{x+y+z}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có: 

\(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{1}{x+y+z}=\frac{y+z+1+x+z+2+x+y-3}{x+y+z}=2\)

\(\Rightarrow\hept{\begin{cases}y+z+1=2x\\x+z+2=2y\\x+y+z=\frac{1}{2}\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{5}{6}\\z=-\frac{5}{6}\end{cases}}\)

\(A=2016x+y^{2017}+z^{2017}=2016.\frac{1}{2}+\left(\frac{5}{6}\right)^{2017}+\left(-\frac{5}{6}\right)^{2017}=1008\)

Bình luận (0)
 Khách vãng lai đã xóa
Xem chi tiết