phân tích sau thành nhân tử: x^3+y^3+z^3-3xyz
phân tích đa thức sau thành nhân tử
x^3+y^3+z^3-3xyz
Phân tích thành nhân tử:
\(x^3 + y^3 + z^3 -3xyz\)
\(=\left(x+y\right)^3-3xy\left(x+y\right)+z^3-3xyz\\ =\left(x+y+z\right)\left(x^2+2xy+y^2-xz-yz+z^2\right)-3xy\left(x+y+z\right)\\ =\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)\)
\(x^3+y^3+z^3-3xyz\)
\(=\left(x^3+3x^2y+3xy^2+y^3\right)+z^3-3x^2y-3xy^2-3xyz\)
\(=\left(x+y\right)^3+z^3-3xy\left(x+y+z\right)\)
\(=\left(x+y+z\right)\left[\left(x+y\right)^2-\left(x+y\right)z+z^2\right]-3xy\left(x+y+z\right)\)
\(=\left(x+y+z\right)\left(x^2+2xy+y^2-xz-yz+z^2-3xy\right)\)
\(=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-xz\right)\)
x3 + y3 + z3 - 3xyz
= (x+y)3 - 3xy(x-y) + z3 - 3xyz
= [(x+y)3 + z3] - 3xy(x+y+z)
= (x+y+z)3 - 3z(x+y)(x+y+z) - 3xy(x-y-z)
= (x+y+z)[(x+y+z)2 - 3z(x+y) - 3xy]
= (x+y+z)(x2 + y2 + z2 + 2xy + 2xz + 2yz - 3xz - 3yz - 3xy)
= (x+y+z)(x2 + y2 + z2- xy - xz - yz)
phân tích thành nhân tử
\(x^3+y^3+z^3+3xyz\)
Sửa đề: \(x^3+y^3+z^3-3xyz\)
\(=\left(x+y\right)^3+z^3-3xy\left(x+y\right)-3xyz\)
\(=\left(x+y+z\right)\left[\left(x+y\right)^2-z\left(x+y\right)+z^2\right]-3xy\left(x+y+z\right)\)
\(=\left(x+y+z\right)\left(x^2+2xy+y^2-xz-yz+z^2-3xy\right)\)
\(=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-xz-yz\right)\)
x3 + y3 + z3 - 3xyz
= (x³ + 3x²y + 3xy² + y³) - (3x²y - 3xy²) + z³ - 3xyz
= (x + y)³ - 3xy(x - y) + z³ - 3xyz
= [(x + y)³ + z³] - 3xy(x + y + z)
= (x + y + z)³ - 3(x + y)²z - 3(x + y)z² - 3xy(x + y + z)
= (x + y + z)³ - 3z(x + y)(x + y + z) - 3xy(x + y + z)
= (x + y + z)[(x + y + z)² - 3z(x + y) - 3xy]
= (x + y + z)(x² + y² + z² + 2xy + 2xz + 2yz - 3xz - 3yz - 3xy)
= (x + y + z)(x² + y² + z² - xy - xz - yz)
Phân tích đa thức thành nhân tử: x^3+y^3+z^3-3xyz
Ta có:
x³ + y³ + z³ - 3xyz = (x+y)³ - 3xy(x-y) + z³ - 3xyz
= [(x+y)³ + z³] - 3xy(x+y+z)
= (x+y+z)³ - 3z(x+y)(x+y+z) - 3xy(x-y-z)
= (x+y+z)[(x+y+z)² - 3z(x+y) - 3xy]
= (x+y+z)(x² + y² + z² + 2xy + 2xz + 2yz - 3xz - 3yz - 3xy)
= (x+y+z)(x² + y² + z² - xy - xz - yz).
phân tích đa thức sau thành nhân tử :
\(x^3+y^3+z^3-3xyz\)
\(x^3+y^3+z^3-3xyz=\left(x+y\right)^3+z^3-3xy\left(x+y\right)-3xyz\)
\(=\left(x+y+z\right)\left[\left(x+y\right)^2-\left(x+y\right)z+z^2\right]-3xy\left(x+y+z\right)\)
\(=\left(x+y+z\right)\left(x^2+2xy+y^2-xz-yz+z^2-3xy\right)\)
\(=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)\)
Phân tích đa thức sau thành nhân tử: x3 + y3 + z3 + 3xyz
Phân tích đa thức thành nhân tử
X^3+y^3+z^3+3xyz
\(x^3+y^3+z^3+3xyz\)
\(=\left(x+y\right)^3-3xy\left(x+y\right)+z^3+3xyz\)
\(=\left(x+y\right)^3-3xy\left(x+y+z\right)+z^3\)
\(=\left(x+y+z\right)^3-3\left(x+y\right)z\left(x+y+z\right)-3xy\left(x+y+z\right)\)
\(=\left(x+y+z\right)^3-3\left(x+y+z\right)\left(xy+yz+xz\right)\)
\(=\left(x+y+z\right)\left[\left(x+y+z\right)^2-3xy-3yz-3xz\right]\)
\(\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-xz\right)\)
Trần Đức Thắng sai rùi X^3+y^3+z^3+3xyz cơ mà có phải X^3+y^3+z^3-3xyz đâu mà làm vậy
Phân tích đa thức sau thành nhân tử: x3 + y3 + z3 - 3xyz
Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học toán với OnlineMath
\(x^3+y^3+z^3-3xyz\)
\(=\left(x+y\right)^3-3xy\left(x+y\right)+z^3-3xyz\)
\(=\left(x+y+z\right)\left[\left(x+y\right)^2-\left(x+y\right)z+z^2\right]-3xy\left(x+y+z\right)\)
\(=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)\)
Phân tích các đa thức sau thành nhân tử :
a) x^3 + y^3 + z^3 - 3xyz
b) x^3 - 0,25 . x =0
Giúp mình nha