Những câu hỏi liên quan
DM
Xem chi tiết
SG
9 tháng 6 2016 lúc 15:45

B = 10n + 18n - 1

B = 10n - 1 - 9n + 27n

B = 999....9 - 9n + 27n

  ( n chữ số 9)

B = 9 x ( 111...1 - n) + 27n

          ( n chữ số 1)

Vì 1 số và tổng các chữ số của nó có cùng số dư trong phép chia cho 3 nên 111...1 - n chia hết cho 3

                                                                                                         ( n chữ số 1)

=> 9 x ( 111...1 - n) chia hết cho 27. Mà 27n chia hết cho 27 => B chia hết cho 27

Chứng tỏ B chia hết cho 27

Bình luận (0)
TT
9 tháng 6 2016 lúc 15:40

Ta có: 10^n + 18n - 1 = (10^n - 1) + 18n = 99...9 + 18n (số 99...9 có n chữ số 9) 
= 9(11...1 + 2n) (số 11...1 có n chữ số 1) = 9.A 
Xét biểu thức trong ngoặc A = 11...1 + 2n = 11...1 - n + 3n (số 11...1 có n chữ số 1). 
Ta đã biết một số tự nhiên và tổng các chữ số của nó sẽ có cùng số dư trong phép chia cho 3. Số 11...1 (n chữ số 1) có tổng các chữ số là 1 + 1 + ... + 1 = n (vì có n chữ số 1). 
=> 11...1 (n chữ số 1) và n có cùng số dư trong phép chia cho 3 => 11...1 (n chữ số 1) - n chia hết cho 3 => A chia hết cho 3 => 9.A chia hết cho 27 hay 10^n + 18n - 1 chia hết cho 27 (đpcm)

Bình luận (0)
TT
9 tháng 6 2016 lúc 15:40

Ta có: 10^n + 18n - 1 = (10^n - 1) + 18n = 99...9 + 18n (số 99...9 có n chữ số 9) 
= 9(11...1 + 2n) (số 11...1 có n chữ số 1) = 9.A 
Xét biểu thức trong ngoặc A = 11...1 + 2n = 11...1 - n + 3n (số 11...1 có n chữ số 1). 
Ta đã biết một số tự nhiên và tổng các chữ số của nó sẽ có cùng số dư trong phép chia cho 3. Số 11...1 (n chữ số 1) có tổng các chữ số là 1 + 1 + ... + 1 = n (vì có n chữ số 1). 
=> 11...1 (n chữ số 1) và n có cùng số dư trong phép chia cho 3 => 11...1 (n chữ số 1) - n chia hết cho 3 => A chia hết cho 3 => 9.A chia hết cho 27 hay 10^n + 18n - 1 chia hết cho 27 (đpcm)

Bình luận (0)
LA
Xem chi tiết
LT
10 tháng 1 2016 lúc 20:38

a)10^n+18n-1=10^n-1+18n=999....99(n chu so 9)+18n

  =9.(111...11(n chu so 9)+2n)

  Xet 111...11(n chu so 9)+2n=111..11-n+3n

  De thay tong cac chu so cua 111....11(n chu so 1) la n

 =>111...11-n chia het cho 3

 =>111...11-n+3n chia het cho 3

 =>10^n+18n-1 chia het cho 27

Bình luận (0)
HS
Xem chi tiết
NT
18 tháng 12 2017 lúc 21:06

b)  Ta có: 10^n + 18n - 1 = (10^n - 1) + 18n = 99...9 + 18n (số 99...9 có n chữ số 9) 
= 9(11...1 + 2n) (số 11...1 có n chữ số 1) = 9.A 
Xét biểu thức trong ngoặc A = 11...1 + 2n = 11...1 - n + 3n (số 11...1 có n chữ số 1). 
Ta đã biết một số tự nhiên và tổng các chữ số của nó sẽ có cùng số dư trong phép chia cho 3. Số 11...1 (n chữ số 1) có tổng các chữ số là 1 + 1 + ... + 1 = n (vì có n chữ số 1). 
=> 11...1 (n chữ số 1) và n có cùng số dư trong phép chia cho 3 => 11...1 (n chữ số 1) - n chia hết cho 3 => A chia hết cho 3 => 9.A chia hết cho 27 hay 10^n + 18n - 1 chia hết cho 27 (đpcm)

c)  10^n+72n-1 
=10^n-1+72n 
=(10-1)[10^(n-1)+10^(n-2)+...+10+1]+72n 
=9[10^(n-1)+10^(n-2)+...+10+1]-9n+81n 
=9[10^(n-1)+10^(n-2)+...+10+1-n]+81n 
=9[(10^(n-1)-1)+(10^(n-2)-1)+...+(10-1)... + 81n 
ta có 10^k - 1 = (10-1)[10^(k-1)+...+10+1] chia hết cho 9 =>9[(10^(n-1)-1) +(10^(n-2)-1) +... +(10-1) +(1-1)] chia hết cho 81 =>9[(10^(n-1)-1)+(10^(n-2)-1)+...+(10-1)... + 81n chia hết cho 81 =>đpcm.

Bình luận (0)
LA
Xem chi tiết
NT
Xem chi tiết
PD
30 tháng 6 2018 lúc 16:42

a,\(10^n+18n-1\)

\(=99...9+18n\)(n-1 chữ số 9)

Mà \(99..9⋮9;18n⋮9\)lại có \(999..9⋮3;18n⋮3\)

\(\Rightarrow999..9+18n⋮\left(3.9\right)\)

\(\Rightarrow10^n+18n-1⋮27\)

Bình luận (0)
AH
13 tháng 8 2018 lúc 9:34

mình biết nội quy rồi nên đưng đăng nội quy

ai chơi bang bang 2 kết bạn với mình

mình có nick có 54k vàng đang góp mua pika 

ai kết bạn mình cho

Bình luận (0)
LD
18 tháng 8 2018 lúc 11:09

Phạm Tuấn Đạt óc....  . 10n-1 =99..9 (có n chữ số)

có n-1 tức là n=2 thì 102-1 có 1 chữ số

ahihi

Bình luận (0)
PL
Xem chi tiết
GG

a) Ta có :

\(72=8.9\)

Ta thấy :

\(10^{28}⋮8\)

\(8⋮8\)

\(\Rightarrow10^{28}+8⋮8\)

Tổng các chữ số của \(10^{28}=1\)

Tổng các chữ số của \(8=8\)

\(\Rightarrow\)Tổng các chữ số của \(10^{28}+8=1+8=9⋮9\)

\(\Rightarrow10^{28}⋮8;9\)

\(\Rightarrow10^{28}⋮72\)

\(\Rightarrow F⋮72\left(đpcm\right)\)

b) Ta có :

 \(10^n+18n-1=10^n-1+18n=999...9\)( n chữ số 9 ) \(+18n\)

                              \(=9\left(111....1+2n\right)\)( n chữ số 1 )

Xét \(111...1+2n=111...1-n+3n\)

Dễ thấy tổng các chữ số của \(111...1\)là n

\(\Rightarrow111...1-n⋮3\)

\(\Rightarrow111...1-n+3n⋮3\)

\(\Rightarrow10^n+18n-1⋮27\)

\(\Rightarrow J⋮27\left(đpcm\right)\)

c) Ta có :

\(K=10^n+72n-1=10^n-1+72n\)

\(10^n-1=999...9\)( n - 1 chữ số 9 )

               \(=9\left(111...1\right)\)( n chữ số 1 )

\(K=10^n-1+72n=9\left(111...1\right)+72n\)

\(\Rightarrow K:9=111...1+8n=111...1-n+9n\)

Ta thấy :

\(111...1\)( n chữ số 1 ) có tổng các chữ số là n

\(\Rightarrow111...1-n⋮9\)

\(\Rightarrow K:9=111...1-n+9n⋮9\)

\(\Rightarrow K⋮81\left(đpcm\right)\)

Bình luận (0)
 Khách vãng lai đã xóa
PL
8 tháng 1 2020 lúc 20:54

thank you bạn nha

Bình luận (0)
 Khách vãng lai đã xóa
NB
8 tháng 1 2020 lúc 21:24

Bạn Nguyên thiếu điều kiện là 8 và 9 nguyên tố cùng nhau nha

Chúc bn học tốt

Bình luận (0)
 Khách vãng lai đã xóa
TG
Xem chi tiết
NT
19 tháng 3 2021 lúc 21:28

ctr nó chia hết cho 3 và 9

Bình luận (0)
 Khách vãng lai đã xóa
LL
Xem chi tiết
H24
5 tháng 2 2018 lúc 18:34

Chứng minh rằng:10n + 18n - 1 chia hết cho 27.

Ta có: 10n + 18n - 1 = (10^n - 1) + 18n = 99...9 + 18n (số 99...9 có n chữ số 9) 
= 9(11...1 + 2n) (số 11...1 có n chữ số 1) = 9.A 
Xét biểu thức trong ngoặc A = 11...1 + 2n = 11...1 - n + 3n (số 11...1 có n chữ số 1). 
Ta đã biết một số tự nhiên và tổng các chữ số của nó sẽ có cùng số dư trong phép chia cho 3. Số 11...1 (n chữ số 1) có tổng các chữ số là 1 + 1 + ... + 1 = n (vì có n chữ số 1). 
=> 11...1 (n chữ số 1) và n có cùng số dư trong phép chia cho 3 => 11...1 (n chữ số 1) - n chia hết cho 3 => A chia hết cho 3 => 9.A chia hết cho 27 hay 10n + 18n - 1 chia hết cho 27 (đpcm)

Bình luận (0)
NP
Xem chi tiết
PD
17 tháng 3 2017 lúc 18:55

Ta có: 10^n + 18n - 1 = (10^n - 1) + 18n = 99...9 + 18n (số 99...9 có n chữ số 9)
= 9(11...1 + 2n) (số 11...1 có n chữ số 1) = 9.A
Xét biểu thức trong ngoặc A = 11...1 + 2n = 11...1 - n + 3n (số 11...1 có n chữ số 1).
Ta đã biết một số tự nhiên và tổng các chữ số của nó sẽ có cùng số dư trong phép chia cho 3. Số 11...1 (n chữ số 1) có tổng các chữ số là 1 + 1 + ... + 1 = n (vì có n chữ số 1).
=> 11...1 (n chữ số 1) và n có cùng số dư trong phép chia cho 3 => 11...1 (n chữ số 1) - n chia hết cho 3 => A chia hết cho 3 => 9.A chia hết cho 27 hay 10^n + 18n - 1 chia hết cho 27 (đpcm)

Bình luận (0)