Tìm n la số nguyên dương dể n+1 chia hết cho 2n-1
Tìm n la số nguyên dương dể n+1 chia hết cho 2n-1
Gọi d là UCLN(n+1;2n-1)
Vì n+1 chia hết cho 2n-1
Suy ra 2.(n+1) chia hết cho 2n-1
Suy ra 2n+2 chia hết cho 2n-1
Vì 2n-1 chia hết cho 2n-1
Suy ra 2.(n-1)+2 chia hết cho 2n-1
Suy ra 2n+1 chia hết cho 2n-1
Ta có:2n+2=4n+4
2n+1=4n+2
Suy ra:4n+4-4n+2=2
Mà 2 chia het cho d
Suy ra d=-1;1;-2;2
Vậy n=...........
tìm số nguyên n dể:
2n-7 chia hết cho n-5
2n-7 chia hết cho n-5
=>2n-10+3 chia hết cho n-5
=>2.(n-5)+3 chia hết cho n-5
Mà 2.(n-5) chia hết cho n-5
=>3 chia hết cho n-5
=>n-5 thuộc Ư(3)={1;-1;3;-3}
Ta có bảng sau:
n-5 | 1 | -1 | 3 | -3 |
n | 6 | 4 | 8 | 2 |
Vậy n=2;4;6;8
Tìm tất cả các số nguyên dương k sao cho tồn tại số nguyên dương n thỏa mãn 2n+11 chia hết cho 2k-1.
Để tìm tất cả các số nguyên dương k thỏa mãn điều kiện đã cho, ta sẽ giải phương trình theo n.
2n + 11 chia hết cho 2k - 1 có nghĩa là tồn tại một số nguyên dương m sao cho:
2n + 11 = (2k - 1)m
Chuyển biểu thức trên về dạng phương trình tuyến tính:
2n - (2k - 1)m = -11
Ta nhận thấy rằng nếu ta chọn một số nguyên dương nào đó, ta có thể tìm được một số nguyên dương k tương ứng để phương trình trên có nghiệm. Do đó, ta chỉ cần tìm tất cả các số nguyên dương n thỏa mãn phương trình trên.
Để giải phương trình này, ta có thể sử dụng thuật toán Euclid mở rộng (Extended Euclidean Algorithm). Tuy nhiên, trong trường hợp này, ta có thể tìm được một số giá trị n và k thỏa mãn phương trình bằng cách thử từng giá trị của n và tính giá trị tương ứng của k.
Dưới đây là một số cặp giá trị n và k thỏa mãn phương trình đã cho:
(n, k) = (3, 2), (7, 3), (11, 4), (15, 5), (19, 6), …
Từ đó, ta có thể thấy rằng có vô số giá trị n và k thỏa mãn phương trình đã cho.
Chứng minh rằng trong 2n - 1 số tự nhiên khác nhau luôn tìm được n số có tổng chia hết cho n (n nguyên dương)
Cho m , n là các số nguyên dương và n \(\le\)m. Tìm m vÀ n biết rằng 2n+1 chia hết cho m và 3m+1 chia hết cho n
tìm số nguyên n để 2n chia hết cho n+3 b, n chia hết cho n-1 c n-1, chia hết 2n+1
* Tìm số nguyên n, sao cho :
a) 2n + 1 chia hết cho n - 5
b) n mũ 2 + 3n - 13 chia hết cho n + 3
c) n mũ 2 + 3 chia hết cho n - 1
* Tìm số nguyên dương n sao cho n + 2 của 111 còn n - 2 là bội của 11
* Tìm n thuộc Z để : n - 1 là bội của n + 5 và n + 5 là bội của n - 1
a,2n+1 chia hết cho n-5
2n-10+11 chia hết cho n-5
Suy ra n-5 thuộc Ư[11]
......................................................
tíc giùm mk nha
Bài 1:Cho A=(n-1)(2n-3)-2n(n-3)-4n. Chứng minh A chia hết cho 3 với mọi số nguyên n.
Bài 2: Tìm số nguyên n để B= (n+2)(2n-3)+n(2n-3)+n(n+10) chia hết cho n+3.
Bài 1:
$A=(n-1)(2n-3)-2n(n-3)-4n$
$=2n^2-5n+3-(2n^2-6n)-4n$
$=-3n+3=3(1-n)$ chia hết cho $3$ với mọi số nguyên $n$
Ta có đpcm.
Bài 2:
$B=(n+2)(2n-3)+n(2n-3)+n(n+10)$
$=(2n-3)(n+2+n)+n(n+10)$
$=(2n-3)(2n+2)+n(n+10)=4n^2-2n-6+n^2+10n$
$=5n^2+8n-6=5n(n+3)-7(n+3)+15$
$=(n+3)(5n-7)+15$
Để $B\vdots n+3$ thì $(n+3)(5n-7)+15\vdots n+3$
$\Leftrightarrow 15\vdots n+3$
$\Leftrightarrow n+3\in\left\{\pm 1;\pm 3;\pm 5;\pm 15\right\}$
$\Rightarrow n\in\left\{-2;-4;0;-6;-8; 2;12;-18\right\}$
1)Tìm các số nguyên dương x:y:z sao cho: x+y+z=xyz
2) Biết n là số nguyên không chia hết cho 2 và 3; chứng minh42n+3n+5 chia hết cho 6
Do vai trò bình đẳng của x, y, z trong phương trình,
trước hết ta xét x ≤ y ≤ z.
Vì x, y, z nguyên dương nên xyz ≠ 0, do x ≤ y ≤ z
=> xyz = x + y + z ≤ 3z => xy ≤ 3=> xy thuộc {1 ; 2 ; 3}.
Nếu xy = 1 => x = y = 1,
thay vào (2) ta có : 2 + z = z, vô lí.
Nếu xy = 2, do x ≤ y nên x = 1 và y = 2,
thay vào (2), => z = 3.Nếu xy = 3,
do x ≤ y nên x = 1 và y = 3,
thay vào (2), => z = 2.
Vậy nghiệm nguyên dương của phương trình (2) là các hoán vị của (1 ; 2 ; 3)
phần kia thì chịu :)