Gọi a,b,c là ba cạnh của tam giác ABC biết: [1+b/a].[1+c/b].[1+a/c]=8
Chứng minh tam giác ABC đều
Gọi a,b,c là độ dài 3 cạnh của tam giác ABC, biết rằng :
(1+ b/a)(1+ c/b)+(1+ a/c) =8
Chứng minh rằng tam giác ABC là tam giác đều
\(\left(1+\frac{b}{a}\right)\left(1+\frac{c}{b}\right)\left(1+\frac{a}{c}\right)=8\Leftrightarrow\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}=8\)
\(\Leftrightarrow\frac{\left(a+b\right)^2\left(b+c\right)^2\left(c+a\right)^2}{a^2b^2c^2}=64\)(*)
Ta có :\(\left(a+b\right)^2\ge4ab\) ; \(\left(b+c\right)^2\ge4bc\) ; \(\left(c+a\right)^2\ge4ca\)
Suy ra vế trái của (*) lớn hơn hoặc = 64. Dấu đẳng thức xảy ra khi a = b = c. Khi đó tg ABC đều.
chưngs minh tam giác abc đều mà sao lại nói tam giác abc ko đều
Gọi a,b,c là độ dài 3 cạnh của 1 tam giác ABC ,biết \(\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{a}{c}\right)=8\).Chứng minh rằng tam giác ABC đều
Cho tam giác ABC có ba cạnh a,b,c biet: [1+b/a].[1+c/b].[1+a/c]=8
Chứng minh tam giác ABC đều
Gọi a, b, c là độ dài 3 cạnh của tam giác ABC, biết rằng: \(\left(1+\dfrac{b}{a}\right)\left(1+\dfrac{c}{b}\right)\left(1+\dfrac{a}{c}\right)=8\)
CMR: Tam giác ABC là tam giác đều.
Câu hỏi của Phạm Thị Hường - Toán lớp 8 - Học toán với OnlineMath
Em tham khảo bài làm ở link này nhé!
Cho tam giác ABC có cạnh là a,b,c biet:
[1+b/a].[1+c/b].[1+a/c]=8
Chứng minh tam giác ABC đều
Cho ABC có B B = 60 , A = 2 cm,BC = 5 cm. Trên cạnh BC lấy điểm D sao cho
BA BD = .
a) Chứng minh tam giác ABD đều;
b) Gọi H là trung điểm của BD. Chứng minh AH BD ⊥ ;
c) Tính độ dài cạnh AC;
d) Tam giác ABC có là tam giác vuông không? Tại sao?
Cho a,b,c là độ dài 3 cạnh tam giác ABC
Biết : (1+b/a)*(1+c/b)*(1+a/c)
CMR tam giác ABC đều
cho tam giác ABC có độ dài ba cạnh là a,b,c sao cho a^2+b^2+c^2 = ab+bc+ca . chứng minh rằng tam giác ABC là tam giác đều
a^2+b^2+c^2=ab+bc+ac
=>2a^2+2b^2+2c^2=2ab+2bc+2ac
<=>2a^2+2b^2+2c^2-2ab-2bc-2ac=0
<=>(a^2-2ab+b^2)+(b^2-2bc+c^2)+(c^2-2ac+a^2)=0
<=>(a-b)^2+(b-c)^2+(c-a)^2=0
=>a-b=b-c=c-a=0
=>a=b;b=c;c=a
=>a=b=c
=>tam giác abc là tam giác đều
gọi a,b,c là độ dài 3 cạnh của tam giác ABC thoả mãn: a3+b3+c3=3abc.Chứng minh tam giác ABC đều.
a;b;c ;à độ dài 3 cạnh của tam giác \(\Rightarrow a;b;c>0\)
Ta có:
\(a^3+b^3+c^3=3abc\)
\(\Leftrightarrow a^3+b^3+3ab\left(a+b\right)-3ab\left(a+b\right)+c^3-3abc=0\)
\(\Leftrightarrow\left(a+b\right)^3+c^3-3ab\left(a+b+c\right)=0\)
\(\Leftrightarrow\left(a+b+c\right)\left(\left(a+b\right)^2-c\left(a+b\right)+c^2\right)-3ab\left(a+b+c\right)=0\)
\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)
\(\Leftrightarrow a^2+b^2+c^2-ab-bc-ca=0\) (do \(a+b+c>0\))
\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)
\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}a-b=0\\b-c=0\\c-a=0\end{matrix}\right.\) \(\Leftrightarrow a=b=c\)
Hay tam giác ABC đều