Những câu hỏi liên quan
TH
Xem chi tiết
HD
15 tháng 1 2022 lúc 23:51

Ta có x+ x+ 1 = y2

Lại có x+ 2x+ 1 ≥ x+ x+ 1 hay (x2 + 1)2 ≥ x+ x+ 1

=> (x2 + 1)2 ≥ y(1)

Lại có x+ x+ 1 > x4 => y2 > x4 (2)

Từ (1) và (2), ta có x4 < y2 ≤ (x2 + 1)2

<=> y2 = (x2 + 1)2 = x+ 2x+ 1

Mà x+ x+ 1 = y=> x+ 2x+ 1 = x+ x+ 1

<=> x2 = 0 <=> x = 0

Thay vào, ta có 1 = y<=> y ∈ {-1,1}

Vậy ...

 

Bình luận (0)
LT
Xem chi tiết
B1
14 tháng 9 2017 lúc 21:09

<=>x^2+y^2-x-y-xy=0 
<=>2x^2+2y^2-2x-2y-2xy=0 
<=>(x-y)^2+(x-1)^2+(y-1)^2=2 
mà 2=0+1+1=1+0+1=1+1+0 
(phần này tách số 2 ra thành tổng 3 số chính phương) 
Xét trường hợp 1: 
(x-y)^2=0 
(x-1)^2=1 
(y-1)^2=1 
Giải ra ta được x=2, y=2 
Tương tự xét các trường hợp còn lại. 
Kết quả: 5 nghiệm: (2;2) ; (1;0) ; (1;2) ; (0;1) ; (2;1) 
Thân^^

Bình luận (0)
NT
14 tháng 9 2017 lúc 21:10

x2 - xy + y2 = x - y

<=> x2 - xy + y2 - x + y = 0

<=> x ( x - y) + y2 - ( x - y) = 0

<=> (x-1)(x-y)y2 =0

Bình luận (0)
DV
Xem chi tiết
TN
Xem chi tiết
DH
Xem chi tiết
DV
Xem chi tiết
GH
Xem chi tiết
H24
Xem chi tiết
NA
Xem chi tiết
TC
30 tháng 7 2021 lúc 21:16

undefined

Bình luận (0)
PG
30 tháng 7 2021 lúc 21:16

      \(x+y+xy=x^2+y^2\)

⇔  \(2xy+2x+2y=2x^2+2y^2\)

\(\left(x^2+y^2-2xy\right)+\left(x^2-2x+1\right)+\left(y^2-2y+1\right)=2\)           

⇔  \(\left(x-y\right)^2+\left(x-1\right)^2+\left(y-1\right)^2=2\)

⇔ 

⇔ 

Các cặp số nguyên (x, y) thỏa mãn phương trình là : (0; 0); (2; 2); (0; 1); (2; 1); (1; 0);(1;2).

Bình luận (1)
JJ
Xem chi tiết
NK
18 tháng 1 2021 lúc 11:47

a) Thay \(m=7\) vào phương trình, ta được:

\(x^2-2x+7=0\)

Xét \(\Delta=\left(-2\right)^2-4.1.7=4-28=-24\)

=> Phương trình vô nghiệm \(\left(\Delta< 0\right)\)

b) Theo hệ thức Vi-ét, ta có: \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-\left(-2\right)}{1}=2\\x_1.x_2=\dfrac{m}{1}\end{matrix}\right.\)

Xét \(\Delta=\left(-2\right)^2-4.1.m=4-4m\)

Để phương trình có nghiệm thì \(\Delta\ge0\)

\(\Leftrightarrow4-4m\ge0\\ \Leftrightarrow-4m\ge-4\\ \Leftrightarrow m\le1\)

Theo đề bài, ta có: 

\(x^2+y^2=5\\ \Leftrightarrow x^2+y^2+2xy-2xy=5\\ \Leftrightarrow\left(x+y\right)^2-2xy=5\\ \Leftrightarrow2^2-2m=5\\ \Leftrightarrow4-2m=5\\ \Leftrightarrow2m=-1\\ \Leftrightarrow m=-\dfrac{1}{2}\)

 

 
Bình luận (1)