Tìm x,y thuộc Z
6xy - 3x - 12y - 24 = 0
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Tìm x và y thuộc Z A: x-y+xy-9=0 B xy-3y-5x+10=0 C 6xy-3x-2y-1=0
a: x-y+xy-9=0
=>x+xy-y-1=8
=>(y+1)(x-1)=8
=>(x-1;y+1) thuộc {(1;8); (8;1); (-1;-8); (-8;-1); (2;4); (4;2); (-2;-4); (-4;-2)}
=>(x,y) thuộc {(2;7); (9;0); (0;-9); (-7;-2); (3;3); (5;1); (-1;-5); (-3;-3)}
b: xy-3y-5x+10=0
=>y(x-3)-5x+15=5
=>(x-3)(y-5)=5
=>(x-3;y-5) thuộc {(1;5); (5;1); (-1;-5); (-5;-1)}
=>(x,y) thuộc {(4;10); (8;6); (2;0); (-2;4)}
c: 6xy-3x-2y-1=0
=>3x(2y-1)-2y+1-2=0
=>(2y-1)(3x-1)=2
=>(3x-1;2y-1) thuộc {(2;1); (-2;-1)}
=>(x,y) thuộc {(1;1)}
Đường thẳng d song song với hai mặt phẳng
(P): 3x + 12y - 3z - 5 = 0,
(Q): 3x - 4y + 9z = 0 và đồng thời cắt
cả hai đường thẳng d 1 : x + 5 2 = y - 3 - 4 = z + 1 3 , d 2 : x - 3 - 2 = y + 1 3 = z - 2 4 có phương trình là
Đáp án D
Cách giải
Vì d song song với hai mặt phẳng (P) và (Q) nên nhận
Đường thẳng d song song với hai mặt phẳng P : 3 x + 12 y - 3 z - 5 = 0 , Q : 3 x - 4 y + 9 z + 7 = 0 và đồng thời cắt cả hai đường thẳng d 1 : x + 5 2 = y - 3 - 4 = z + 1 3 , d 2 : x - 3 - 2 = y + 1 3 = z - 2 4 có phương trình là
A. x + 3 8 = y + 1 3 = z - 2 4
B. x - 3 8 = y + 1 3 = z - 2 4
C. x + 3 - 8 = y + 1 3 = z + 2 4
D. x + 3 - 8 = y + 1 3 = z - 2 4
Chọn D
Cách giải : Vì d song song với hai mặt phẳng (P) và (Q) nên nhận
Trong không gian Oxyz viết phương trình đường thẳng d song song với hai mặt phẳng (P): 3x+12y-3z-5=0, (Q): 3x-4y+9z+7=0 và đồng thời cắt cả hai đường thẳng d 1 : x + 5 2 = y - 3 - 4 = z + 1 3 ,
d 2 : x - 3 - 2 = y + 1 3 = z - 2 4
A. x + 3 8 = y + 1 3 = z - 2 4
B. x - 3 8 = y + 1 3 = z - 2 4
C. x + 3 - 8 = y + 1 3 = z + 2 4
D. x + 3 - 8 = y + 1 3 = z - 2 4
Tìm x,y thuộc Z :
a) 2x . ( x -y) - 3 . (x-y) = 6
b) 6xy + 3x - 4y = 7
tìm x,y thuộc z
a. \(4x^2+3y^2+3x+12y+5=0\)
b.\(\left(1+x^2\right)\left(1+y^2\right)+4xy+2\left(x+y\right)\left(1+xy\right)=25\)
a/ Ta có : \(3y^2+12y+\left(4x^2+3x+5\right)=0\)
Xét \(\Delta'=6^2-3\left(4x^2+3x+5\right)=-12x^2-9x+21\)
Để pt trên có nghiệm thì \(\Delta'\ge0\Leftrightarrow-12x^2-9x+21\ge0\Leftrightarrow-\frac{7}{4}\le x\le1\)
Vì x là nghiệm nguyên nên \(0\le x\le1\)
Do đó x = 0 hoặc x = 1
Nếu x = 0 thì \(y_1=\frac{-6-\sqrt{21}}{3}\) (loại) , \(y_2=\frac{-6+\sqrt{21}}{3}\) (loại)
Nếu x = 1 thì y = -2 (nhận)
Vậy (x;y) = (1;-2)
giải hpt:
a) \(\left\{{}\begin{matrix}4x+9y=6\\3x^2+6xy-x+3y=0\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}\left(x+y+2\right)\left(2x+2y-1\right)=0\\3x^2-32y^2+5=0\end{matrix}\right.\)
c) \(\left\{{}\begin{matrix}2x^2-xy+3y^2=7x+12y-1\\x-y+1=0\end{matrix}\right.\)
tìm x,y sao cho biểu thức :
3x2 + 9y2 - 6xy - 16x - 12y + 2049
đạt GTLN , tìm giá trị đó.
A=3x2 + 9y2 - 6xy - 16x - 12y + 2049
3A=9x2 + 27y2 - 18xy - 48x - 36y + 6147
=(3x-3y-8)2+18y2-84y+6083
=(3x-3y-8)2+2.(3y-7)2+5985>5985
Dấu = xảy ra khi 3y-7=0 và 3x-3y-8=0=>y=7/3 và x=5=>3A=5985=>a=1995
Amin=1995<=>y=7/3 và x=5
mk chỉ tìm được GTNN thôi
1. cmr với mọi x, y ta có:
a) x^2 + 9y^2 + z^2 +19/2 >2x + 2y +4z
b) (x-1)(x-3)(x-4)(x-6) + 9 lớn hơn hoặc bằng 0
c) (x+1)(x+2)(x+3)(x+4) +1 lớn hơn hoặc bằng 0
2. tìm x, y để các biểu thức sau đạt GTNN:
A = x^4 - 2x^3 +3x^2 - 4x + 2017
B = 2x^2 + 9y^2 - 6xy - 6x - 12y + 2018
C= 1 - |1-3x| + (3x-1)^2
Trả lời nhanh giúp mk nhé!