gải phương trình sau: |x-5| +|3-2x|=4
a,Giải phương trình sau : (2x + 3)(x-5)=42 +6x
b, Gải phương trình sau: \(\frac{x}{2x-6}-\frac{x}{2x+2}=\frac{2x}{\left(x+1\right)\left(x-3\right)}\)
c,Gải bất phương trình sau và biểu diễn nghiệm trên trục số : \(\frac{12x+1}{12}\le\frac{9x+1}{3}-\frac{8x+1}{4}\)
Gải phương trình sau: x4+2x3-2x2+2x-3=0
x4+2x3-2x2+2x-3=0
=> (x4 - 1) + (2x3-2x2 )+ (2x-2)=0
=> (x - 1).(x+1).(x2 + 1) + 2x2.(x - 1) + 2.(x -1) = 0
=> (x -1). [(x+1).(x2 + 1) + 2x2 + 2] = 0
<=> (x - 1). (x3 + x + x2 + 1 + 2x2 + 2)= 0
<=> (x - 1). (x3 + x + 3x2 + 3)= 0
<=> x - 1 = 0 hoặc x3 + x + 3x2 + 3 = 0
+) x - 1 = 0 => x =1
+) x3 + x + 3x2 + 3 = 0 <=> x. (x2 + 1) + 3.(x2 + 1) = 0
<=> (x+3). (x2 +1) = 0 <=> x + 3 = 0 (vì x2 + 1 > 0 với mọi x)
<=> x = -3
Vậy pt có 2 nghiệm x = 1 ; x = -3
(x^4+x^3+x+1)/(x^4-x^3+2x^2-x+1)>=0
Gải phương trình :
\(x^4+2x^3-4x-4=0\)
gải phương trình sau
5/-x^2+5x-6 + x+3/2-x = 0
Ta có: \(\dfrac{5}{-x^2+5x-6}+\dfrac{x+3}{2-x}=0\)
\(\Leftrightarrow\dfrac{-5}{\left(x-2\right)\left(x-3\right)}-\dfrac{x^2-9}{\left(x-2\right)\left(x-3\right)}=0\)
\(\Leftrightarrow-5-x^2+9=0\)
\(\Leftrightarrow x=-2\)
gải phương trình tích chú ý: chuyển vế để có 1vees baưngf 0 rồi đặt nhân tử chung
a) (x+2)(3x+5)=(2x-4)(x+1)
b) (2x+5)(x-4)=(x+5)(4-x)
\(a,PT\Leftrightarrow\left(x+2\right)\left(3x+5\right)-\left(2x-4\right)\left(x+1\right)=0\)
<=> \(\left(x+2\right)\left(3x+5\right)-2\left(x+2\right)\left(x+1\right)=0\)
<=> \(\left(x+2\right)\left(3x+5-x-1-2\right)=0\)
<=> \(\left(x+2\right)\left(2x-2\right)=0\)
<=> \(\orbr{\begin{cases}x=-2\\x=1\end{cases}}\)
Vậy: ...
\(b,PT\Leftrightarrow\left(2x+5\right)\left(x-4\right)+\left(x-4\right)\left(x+5\right)=0\)
<=> \(\left(x-4\right)\left(2x+4+x+5\right)=0\)
<=> \(\left(x-4\right)\left(3x+9\right)=0\)
<=> \(\orbr{\begin{cases}x=4\\x=-3\end{cases}}\)
Vậy: ...
CÁC BẠN GIÚP MK NHA , SAU TẾT NỘP R
GẢI PHƯƠNG TRÌNH
a) (8x+5)^2 * (4x+3) * (2x+1) =9
b) (2x+3) * (x+2)^2 * (2x+5) =315
c)(8x-7) * (8x-5) * (2x-1) * (4x-1)=9
d) (x^2+3x+2) * (2x+3) * (2x+5)=30
a) \(\left(8x+5\right)^2\left(4x+3\right)\left(2x+1\right)=9\)
\(\Leftrightarrow\left(64x^2+8x+25\right)\left(8x^2+10x+3\right)-9=0\)
Đặt a = \(8x^2+10x+3\)
\(\left(8a+1\right)a-9=0\)
\(\Leftrightarrow8a^2+a-9=0\)
\(\Leftrightarrow\left(a-1\right)\left(8a+9\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}a=1\\a=-\frac{9}{8}\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}8x^2+10x+3=1\\8x^2+10x+3=-\frac{9}{8}\end{cases}}\)
mà \(8x^2+10x+3=1\Rightarrow8x^2+10x+2=0\)
\(\Rightarrow2\left(x+1\right)\left(4x+1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=-1\\x=-0,25\end{cases}}\)
giải phương trình :
\(\dfrac{5}{x-3}\)+\(\dfrac{4}{x+3}\)=\(\dfrac{x-5}{x^2-9}\)
gải chi tiết giùm mik vs ah
\(\dfrac{5}{x-3}+\dfrac{4}{x+3}=\dfrac{x-5}{x^2-9}\left(ĐKXĐ:x\ne\pm3\right)\\ \Leftrightarrow\dfrac{5\left(x+3\right)+4\left(x-3\right)}{x^2-9}=\dfrac{x-5}{x^2-9}\\ \Leftrightarrow5x+15+4x-12=x-5\\ \Leftrightarrow5x+4x-x=-5-15+12\\ \Leftrightarrow8x=-8\\ \Leftrightarrow x=-1\left(TM\right)\\ Vậy:S=\left\{-1\right\}\)
dùng công thức nghiệm hãy gải phương trình sau : √3x^2 + 2(√3-1)x-4=0
mn giúp gấp
Lời giải:
$\Delta'=(\sqrt{3}-1)^2+4\sqrt{3}=(\sqrt{3}+1)^2$
Do đó pt có 2 nghiệm:
\(x_1=\frac{-b'+\sqrt{\Delta'}}{a}=\frac{1-\sqrt{3}+\sqrt{3}+1}{\sqrt{3}}=\frac{2}{\sqrt{3}}\)
\(x_2=\frac{-b'-\sqrt{\Delta'}}{a}=\frac{1-\sqrt{3}-\sqrt{3}-1}{\sqrt{3}}=-2\)
3.15 giải các phương trình sau :
a) ( x - 6 ) ( 2x - 5 ) ( 3x + 9 ) = 0
b) 2x( x - 3 ) + 5( x - 3 ) = 0
c) ( x^2 - 4 ) - ( x - 2 ) ( 3 - 2x ) =0
3.16 tìm m để phương trình sau có nghiệm :
x=-7 ( 2m - 5 )x - 2m^2 + 8
3.17 giải các phương trình sau :
a) ( 2x - 1 )^2 - ( 2x + 1 ) = 0
\(a,\left(x-6\right)\left(2x-5\right)\left(3x+9\right)=0\Leftrightarrow\left[{}\begin{matrix}x-6=0\Leftrightarrow x=6\\2x-5=0\Leftrightarrow x=\dfrac{5}{2}\\3x+9=0\Leftrightarrow x=-3\end{matrix}\right.\)
\(b,2x\left(x-3\right)+5\left(x-3\right)=0\Leftrightarrow\left(2x+5\right)\left(x-3\right)=0\Leftrightarrow\left[{}\begin{matrix}x-3=0\Leftrightarrow x=3\\2x+5=0\Leftrightarrow x=-\dfrac{5}{2}\end{matrix}\right.\)
\(c,x^2-4-\left(x-2\right)\left(3-2x\right)=0\Leftrightarrow\left(x-2\right)\left(x+2\right)-\left(x-2\right)\left(3-2x\right)=0\Leftrightarrow\left(x-2\right)\left(x+2-3+2x\right)=0\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{1}{3}\end{matrix}\right.\)
\(x=-7\left(2m-5\right)x-2m^2+8\Leftrightarrow x+7\left(2m-5\right)=8-2m^2\Leftrightarrow x\left(14m-34\right)=8-2m^2\)
\(ycđb\Leftrightarrow14m-34\ne0\Leftrightarrow m\ne\dfrac{34}{14}\)\(\Rightarrow x=\dfrac{8-2m^2}{14m-34}\)
\(3.17\Leftrightarrow4x^2-4x+1-2x-1=0\Leftrightarrow4x^2-6x=0\Leftrightarrow x\left(4x-6\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{3}{2}\end{matrix}\right.\)
3.15:
a, \(\Leftrightarrow\left\{{}\begin{matrix}x-6=0\\2x-5=0\\3x+9=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=6\\x=\dfrac{5}{2}\\x=-\dfrac{9}{3}=-3\end{matrix}\right.\)
b, \(\Leftrightarrow\left(x-3\right)\left(2x+5\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-3=0\\2x+5=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\x=-\dfrac{5}{2}\end{matrix}\right.\)
c, \(\Leftrightarrow\left(x-2\right)\left(x+2\right)-\left(x-2\right)\left(3-2x\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+2-3+2x\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-2=0\\3x-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\x=\dfrac{1}{3}\end{matrix}\right.\)
3.16
\(\Leftrightarrow\left(2m-5\right).-7-2m^2+8=0\)
\(\Leftrightarrow-14m+35-2m^2+8=0\)
\(\Leftrightarrow-14m-2m^2+43=0\)
\(\Leftrightarrow-2\left(7m+m^2\right)=-43\)
\(\Leftrightarrow m\left(7-m\right)=\dfrac{43}{2}\)
\(\Leftrightarrow\dfrac{m\left(7-m\right)}{1}-\dfrac{43}{2}=0\)
\(\Leftrightarrow\dfrac{14m-2m^2}{2}-\dfrac{43}{2}=0\)
pt vô nghiệm