Những câu hỏi liên quan
MT
Xem chi tiết
NT
16 tháng 7 2021 lúc 0:28

Không đổi dấu nhé bạn

Bình luận (0)
MT
Xem chi tiết
NT
14 tháng 7 2021 lúc 15:11

Không cần đổi dấu giá trị tuyệt đối 

Bình luận (0)
AH
14 tháng 7 2021 lúc 23:47

Cách hỏi của bạn thực sự hơi khó hiểu. Mình chỉ trả lời theo cách hiểu của mình về câu hỏi của bạn thôi nhé.

- Thứ nhất, không cần phải tìm điều kiện của số trong giá trị tuyệt đối. Thông thường khi đến đoạn $\sqrt{a^2}=|a|$ thì đề bài đã có sẵn điều kiện $a\geq 0$ hoặc $a< 0$ để bạn tiếp tục thực hiện đến đoạn phá trị tuyệt đối. Ví dụ, cho $a< 0$ thì $\sqrt{a^2}=|a|=-a$

- Thứ hai, trong trường hợp $\sqrt{5a}.\sqrt{45a}-3a$, điều kiện để biểu thức này có nghĩa là $5a\geq 0$ và $45a\geq 0$, hay $a\geq 0$.

Khi đó, để phá căn và xuất hiện trị tuyệt đối, bạn thực hiện $\sqrt{5a}.\sqrt{45a}-3a=\sqrt{225a^2}-3a=\sqrt{(15a)^2}-3a=|15a|-3a=15a-3a=12a$

Bình luận (0)
MT
Xem chi tiết
H24
Xem chi tiết
H24
14 tháng 7 2021 lúc 15:52

\(\sqrt{f\left(x\right)}=\sqrt{g\left(x\right)}\left(ĐK:\left[{}\begin{matrix}f\left(x\right)\ge0\\g\left(x\right)\ge0\end{matrix}\right.\right)\\ \Leftrightarrow f\left(x\right)=g\left(x\right)\)

Trong ví dụ \(\sqrt{16x}=\sqrt{81}\), trước khi bình phương 2 vế để phá dấu căn thì bạn cần ghi điều kiện \(16x\ge0\Leftrightarrow x\ge0\) nhé.

Bình luận (5)
H24
14 tháng 7 2021 lúc 16:15

\(\sqrt{16x}=\sqrt{81}\left(ĐK:x\ge0\right)\\ \Leftrightarrow\left(\sqrt{16x}\right)^2=\left(\sqrt{81}\right)^2\\ \Leftrightarrow16x=81\\ \Leftrightarrow x=\dfrac{81}{16}\left(tmđk\right)\)

Thử lại: \(\sqrt{16.\dfrac{81}{16}}=\sqrt{81}\\ \Leftrightarrow\sqrt{81}=\sqrt{81}\left(\text{luôn đúng}\right)\)

Bình luận (3)
MT
Xem chi tiết
H24
11 tháng 7 2021 lúc 14:28

Phân tích rõ một chút nhé : 

-  Căn bậc 2 của số x (bắt buộc là số x phải >=0 ) là \(\sqrt{x},-\sqrt{x}\)

Thì căn bậc 2 số học của x là \(\sqrt{x}\)(do\(\sqrt{x}\ge0\)
 -   Đối với trường hợp căn bậc 2 số học của x2 thì là |x|

Bình luận (5)
NT
11 tháng 7 2021 lúc 14:36

Chắc chắn là cả căn rồi bạn

Bình luận (0)
MT
Xem chi tiết
MY
19 tháng 7 2021 lúc 19:53

\(3-\sqrt{x}\) chưa chắc đã âm

thử x=4=>3-2=1>0

Bình luận (1)
H24
Xem chi tiết
AH
16 tháng 8 2021 lúc 22:34

Tại sao không giải ra $\sqrt{P}$ và $\sqrt{P}$?

Em đã có $P$ rồi, nhưng với $\sqrt{P}$, em làm sao rút gọn được khi mà $P$ đã khá gọn rồi. Cũng chẳng có giá trị nào của $x$ để tính cụ thể $P, \sqrt{P}$ rồi đi so sánh. Vì vậy cách này không khả thi.

Vậy thì phải tìm hướng khác. Muốn so sánh 2 số, ta xét hiệu hai số đó.

$P-\sqrt{P}=\sqrt{P}(\sqrt{P}-1)$

Rõ ràng $\sqrt{P}$ đã dương rồi, giờ ta phải xem xét xem $\sqrt{P}-1$ âm hay dương, hay $P$ có lớn hơn 1 không 

Đó là lý do vì sao bài giải như trên.

Bình luận (5)
AH
16 tháng 8 2021 lúc 22:36

Còn câu hỏi khi nào giải ra từng cái $P$ và $\sqrt{P}$, thì đó là khi đề cho $x=2$ chả hạn, so sánh $P$ và $\sqrt{P}$.

Nhưg hầu như sẽ chẳng có đề nào ra kiểu vậy, mà đa số lợi dụng tính chất của phân thức đó để so sánh (ví dụ như trong bài tính chất nổi bật là $P>1$) cho nhanh. Đó là cái hay của đề bài.

Bình luận (0)
MT
Xem chi tiết
TK
20 tháng 7 2021 lúc 10:06

cái này thì ko nhất thiết phải Cm nha bạn

Câu b kêu tìm x để B ko nhỏ hơn hoặc bằng A

Nghĩa là

\(\dfrac{4}{3-\sqrt{x}}>1\)

\(\Leftrightarrow\dfrac{4}{3-\sqrt{x}}-1>0\)

\(\Leftrightarrow\dfrac{4-\left(3-\sqrt{x}\right)}{3-\sqrt{x}}>0\)

\(\Leftrightarrow\dfrac{\sqrt{x}+1}{3-\sqrt{x}}>0\)

\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}\sqrt{x}+1>0\\3-\sqrt{x}>0\end{matrix}\right.\\\left\{{}\begin{matrix}\sqrt{x}+1< 0\left(VL\right)\\3-\sqrt{x}< 0\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow3-\sqrt{x}>0\)

\(\Leftrightarrow\sqrt{x}< 3\)

\(\Leftrightarrow x< 9\)

Theo Đk ta có x≥0

Vậy 0≤x<9 thì B ko nhỏ hơn hoặc bằng A

Bình luận (1)
AH
21 tháng 7 2021 lúc 18:11

Lời giải giống như bạn dưới đã viết.

Để $B$ không nhỏ hơn hoặc bằng $A$

Tức là $B>A$

$\Leftrightarrow \frac{4}{3-\sqrt{x}}>1$

$\Leftrightarrow \frac{4}{3-\sqrt{x}}-1>0\Leftrightarrow \frac{\sqrt{x}+1}{3-\sqrt{x}}>0$

Để phân thức này dương thì tử và mẫu phải cùng dấu.

Mà $\sqrt{x}+1\geq 0+1>0$ (dương rồi) nên $\sqrt{3}-x$ cũng dương.

------------------------

Đây là cách dễ làm nhất đối với bài này.

------------------------

Về phần lời giải của cô em, chị nghĩ trong lúc giảng em bị miss mất 1 số ý chứ ý cô không phải khẳng định mẫu âm đâu. Có lẽ ý của cô em thế này:

Khi em có: $\frac{4}{3-\sqrt{x}}>1$ thì em không nên nhân chéo mà nên trừ để đưa về hiệu >0 (như bạn Khoa đã giải). Nếu nhân chéo, em sẽ mắc phải 2 TH mẫu âm, mẫu dương như sau:

TH1: $3-\sqrt{x}>0$ thì $\frac{4}{3-\sqrt{x}}>1$ tương đương với $4> 3-\sqrt{x}$

TH2: $3-\sqrt{x}< 0$ thì tương đương $4< 3-\sqrt{x}$ (khi nhân 2 vế với số âm thì phải đổi dấu)

Như vậy thì rất là phức tạp. Nên để tránh TH mẫu âm mà hs giữ nguyên dấu khi nhân chéo thì cô em khuyên như vậy.

Bình luận (0)
AH
21 tháng 7 2021 lúc 18:12

Em còn chỗ nào chưa hiểu thì cứ hỏi thoải mái.

Bình luận (0)
MT
Xem chi tiết
MT
12 tháng 7 2021 lúc 19:10

Đề ví dụTimf x không âm biết căn (x-1)=...... Đề bải x không âm thì chỉ cần x>=0 thôi chứ ạ.  Chỉ rõ chio mình hiểu nhá

Bình luận (0)
NT
12 tháng 7 2021 lúc 22:40

Vì khi lấy ĐKXĐ thì lấy cả biểu thức trong căn mới đúng

Bình luận (0)