Giair hộ em vs
Tìm tất cả các số x,y,z biết : \(\dfrac{x}{y+z+1}=\dfrac{y}{x+z+2}=\dfrac{z}{x+y-3}=x+y+z\)
Giair chi tiết ra hộ em vs ạ.
TH1: x + y + z 0
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
= = =
= = =
⇒ x + y + z =
⇒ x + y = - z
x + z = - y
y + z = - x
Thay y + z + 1 =
https://olm.vn/cau-hoi/tim-tat-ca-cac-so-xyz-biet-dfracxyz1dfracyxz2dfraczxy-3xyz-giair-chi-tiet-ho-e-vs-a.8297156371934
Tìm 2 số có thương là 0,8 . Tổng là 405 . Giair hộ minh nha các bạn minh đang cần gấp . Giair xong nhớ kb nha !!!!!
giair bài 5 hộ mk vs ah
Câu 5 đáng lẽ phải có điều kiện gì mới được chứ.
VD
a=2,
b=c=d=e=g=1
Thấy vào thì 9≥10 là vô lí
Giair hộ mik vs mn ơi =)
giải = 2 cách
36 x ( 10 + 1 )
giúp nhé , cần gấp
36 x ( 10 + 1 )
= 36 x 11
= 396
36 x 10 + 36 x 1
= 360 + 36
= 396
Cách 1 :
36 x ( 10 + 1 )
= 36 x 11
= 396
Cách 2 :
36 x ( 10 + 1 )
= 36 x 10 + 36 x 1
= 360 + 36
= 396
cách 1 :
36 x (10+1)
=36 x 11
= 396
cách 2:
36 x (10+1)
=(36 x 10) +( 36 x 1)
= 360 + 36
= 396
k cho mik nha
Tìm tất cả các số x,y,z biết: \(\dfrac{x}{y+z+1}=\dfrac{y}{x+z+2}=\dfrac{z}{x+y-3}=x+y+z\)
Giair chi tiết hộ e vs ạ.
gợi ý nè:
thử cộng chúng lại xem
\(\dfrac{x}{y+z+1}\) = \(\dfrac{y}{x+z+2}\) = \(\dfrac{z}{x+y-3}\) = \(x+y+z\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{y+z+1}\)=\(\dfrac{y}{x+z+2}\)=\(\dfrac{z}{x+y-3}\)=\(\dfrac{x+y+z}{y+z+1+x+z+2+x+y-3}\)
\(x+y+z\) = \(\dfrac{x+y+z}{2.\left(x+y+z\right)}\) = \(\dfrac{1}{2}\) (1)
\(\dfrac{x}{y+z+1}\) = \(\dfrac{1}{2}\) ⇒ 2\(x\) = y+z+1
⇒ 2\(x\) + \(x\) = \(x+y+z+1\) (2)
Thay (1) vào (2) ta có: 2\(x\) + \(x\) = \(\dfrac{1}{2}\) + 1
3\(x\) = \(\dfrac{3}{2}\) ⇒ \(x=\dfrac{1}{2}\)
\(\dfrac{y}{x+z+2}\) = \(\dfrac{1}{2}\) ⇒ 2y = \(x+z+2\) ⇒ 2y+y = \(x+y+z+2\) (3)
Thay (1) vào (3) ta có: 2y + y = \(\dfrac{1}{2}\) + 2
3y = \(\dfrac{5}{2}\) ⇒ y = \(\dfrac{5}{6}\)
Thay \(x=\dfrac{1}{2};y=\dfrac{5}{6}\) vào (1) ta có: \(\dfrac{1}{2}+\dfrac{5}{6}+z\) = \(\dfrac{1}{2}\)
\(\dfrac{5}{6}\) + z = 0 ⇒ z = - \(\dfrac{5}{6}\)
Kết luận: (\(x;y;z\)) = (\(\dfrac{1}{2}\); \(\dfrac{5}{6}\); - \(\dfrac{5}{6}\))
phân tích đa tức thành nhân tử
a) 5+ \(\sqrt{x}\) + 25 - x
b) xy -x\(\sqrt{y}\) + \(\sqrt{y}\) - 1
c)\(\sqrt{a-b}\) - \(\sqrt{a^2-b^2}\)
d) \(\sqrt{ax}\) + \(\sqrt{by}\) - \(\sqrt{bx}\) -\(\sqrt{ay}\)
Giair hộ mình vs ạ!
giair hộ mình nhé
Câu 2:
\(1.f\left(x\right)=2x^3+x^2-3x+9.\\ g\left(x\right)=-2x^3-x^2+3.\)
Câu 3:
1. Ta có: \(AB=AC\) (\(\Delta ABC\) cân).
Mà \(AC=IC\left(gt\right). \)
\(\Rightarrow AB=IC.\)
Ta có: \(\widehat{ABC}=\widehat{ACB}\) (\(\Delta ABC\) cân).
Mà \(\widehat{ACB}=\widehat{ICE}\) (đối đỉnh).
\(\Rightarrow\widehat{ABC}=\widehat{ICE}.\)
Hay \(\widehat{ABD}=\widehat{ICE}.\)
Xét \(\Delta ABD\) và \(\Delta ICE:\)
BD = CE (gt).
\(\widehat{ABD}=\widehat{ICE}\left(cmt\right).\)
AB = IC (cmt).
\(\Rightarrow\Delta ABD=\Delta ICE\left(c-g-c\right).\)
2. Xét \(\Delta BDM\) và \(\Delta CEN:\)
\(\widehat{MBD}=\widehat{NCE}\left(\widehat{ABD}=\widehat{ICE}\right).\)
\(BD=CE\left(gt\right).\)
\(\widehat{BDM}=\widehat{CEN}\left(=90^o\right).\)
\(\Rightarrow\Delta BDM=\Delta CEN\left(g-c-g\right).\)
\(\Rightarrow BM=CN\) (2 cạnh tương ứng).
Giair hộ mik bài này với nhaaaaa , m.n giải hộ mik đi mà ( ĐỌC TIẾP )
My mother's a professional clerk in Clingme company. She's quite strict, but sometimes humorous and kind. She's definitely the best cook in the family, and I ...( like hoặc love ) her.
\
Giair hộ mình bài 6 với ạ
\(6,\\ a,P=9\left(x^2-2\cdot\dfrac{1}{9}x+\dfrac{1}{81}\right)+\dfrac{26}{9}=9\left(x-\dfrac{1}{9}\right)^2+\dfrac{26}{9}\ge\dfrac{26}{9}\\ P_{min}=\dfrac{26}{9}\Leftrightarrow x-\dfrac{1}{9}=0\Leftrightarrow x=\dfrac{1}{9}\\ b,Q=3\left(x^2-x+\dfrac{1}{4}\right)+\dfrac{1}{4}=3\left(x-\dfrac{1}{2}\right)^2+\dfrac{1}{4}\ge\dfrac{1}{4}\\ Q_{min}=\dfrac{1}{4}\Leftrightarrow x-\dfrac{1}{2}=0\Leftrightarrow x=\dfrac{1}{2}\\ c,R=\left(x^2-2xy+y^2\right)+x^2+1=\left(x-y\right)^2+x^2+1\ge1\\ R_{min}=1\Leftrightarrow\left\{{}\begin{matrix}x-y=0\\x=0\end{matrix}\right.\Leftrightarrow x=y=0\)