chứng minh rằng: 3110-1 chia hết cho 300
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Cho B = 4^1 + 4^2 + 4^3 + ........... + 4^300 . Chứng minh rằng B chia hết cho 5
\(B=4^1+4^2+...+4^{300}\)
\(=4\left(1+4\right)+4^3\left(1+4\right)+...+4^{299}\left(1+4\right)\)
\(=4.5+4^3.5+...+4^{299}.5=5\left(4+4^3+...+4^{299}\right)⋮5\)
Cho B = 4^1 + 4^2 + 4^3 + ........... + 4^300 . Chứng minh rằng B chia hết cho 5
\(B=4+4^2+4^3+...+4^{300}\)
\(B=\left(4+4^2\right)+\left(4^3+4^4\right)+...+\left(4^{299}+4^{300}\right)\)
\(B=5.4+5.4^3+...+5.4^{299}\)
\(B=5\left(4+4^3+4^5+...+4^{299}\right)\)
\(\Rightarrow B⋮5\)
\(\sqrt{\sqrt[]{}\sqrt[]{}\begin{matrix}&\\&\\&\end{matrix}}\)
Chứng minh rằng E=90+180+300+450 chia hết cho 15.
Chứng minh rằng: \(111^{20}+29^{21}+300^{22}\) chia hết cho 5.
Cho : B = 1 + 2 - 3 - 4 + 5 + 6 - 7 - 8 + 9 + 10 - 11 -12 + ... + 298 - 299 - 300 + 301 + 302
Chứng minh rằng B chia hết cho 3
B= 1 + 2 - 3 - 4 + 5 + 6 - 7 - 8 + 9 + 10 - 11 - 12 +...+ 298 - 299 - 300 + 301 + 302
= 1 + ( 2 - 3 - 4 + 5) + ( 6 - 7 - 8 + 9) + ( 10 - 11 - 12 + 13) +...+ (298 - 299 - 300 + 301 ) + 302
= 1 + 0 + 0 +...+ 0 + 302
= 1 + 302 = 303 chia hết cho 3
=> B chia hết cho 3
Chứng minh rằng :
4^(n+3)+4^(n+2)-4^(n+1)-4^n chia hết cho 300
Giúp mình với các bạn êiiii
\(4^{n+3}+4^{n+2}-4^{n+1}-4^n\)
\(\Leftrightarrow4^n.64+4^n.16-4^n.4-4^n=4^n\left(64+16-4-1\right)\)
\(=4^n.75\)
Vì \(4^n\) luôn luôn chia hết cho 4 với mọi
Nên \(4^n.75\) Chia hết cho \(4.75=300\)
Vậy .....
Bài 2:
1.Chứng minh rằng : 9999931999 - 555551997 chia hết cho 5
2.Chứng minh rằng : 1725 - 1321 + 244 Chia hết cho 10
3. Chứng minh rằng: 172008 - 112008 - 32008 + 1 chia hết cho 10
a) Ta thấy \(999993^{1999}⋮̸5\) và \(55555^{1997}⋮5\) nên \(999993^{1999}-55555^{1997}⋮̸5\), mâu thuẫn đề bài.
b)
Ta có \(17^{25}=17^{4.6+1}=17.\left(17^4\right)^6=17.\overline{A1}=\overline{B7}\) có chữ số tận cùng là 7. \(13^{21}=13^{4.5+1}=13.\left(13^4\right)^5=13.\overline{C1}=\overline{D3}\) có chữ số tận cùng là 3. \(24^4=4^4.6^4=\overline{E6}.\overline{F6}=\overline{G6}\) có chữ số tận cùng là 6 nên \(17^{25}-13^{21}+24^4\) có chữ số tận cùng là chữ số tận cùng của \(7-3+6=10\) hay là 0. Vậy \(17^{25}-13^{21}+24^4⋮10\)
c) Cách làm tương tự câu b.
Chứng minh rằng \(3^{300}+5^{200}\)chia hết cho 13
Chứng minh rằng \(100^2+200^2+300^2+...+1000^2\)chia hết cho 185