Những câu hỏi liên quan
H24
Xem chi tiết
H24
21 tháng 8 2023 lúc 9:07

Có: \(f\left(x\right)=2ax^2-4\left(bx-1\right)+5x+c-11\)

\(=2ax^2-4bx+4+5x+c-11\)

\(=2ax^2+\left(-4b+5\right)x+\left(c-11\right)\)

\(\Rightarrow f\left(x\right)=x^2-5x+6\Leftrightarrow\left\{{}\begin{matrix}2a=1\\-4b+5=-5\\c-11=6\end{matrix}\right.\) (theo đồng nhất hệ số)

\(\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{1}{2}\\b=\dfrac{5}{2}\\c=17\end{matrix}\right.\)

Bình luận (0)
BB
Xem chi tiết
BB
Xem chi tiết
TV
Xem chi tiết
H24
20 tháng 8 2020 lúc 16:35

Mình xin phép sửa đề 1 trust ạ :>

Xác định các số a,b,c sao cho \(\frac{1}{\left(x^2+1\right)\left(x-1\right)}=\frac{ax+b}{x^2+1}+\frac{c}{x-1}\)     

Điều kiện x khác 1 :vv

\(pt\Leftrightarrow\frac{1}{\left(x^2+1\right)\left(x-1\right)}=\frac{\left(ax+b\right)\left(x-1\right)}{\left(x^2+1\right)\left(x-1\right)}+\frac{c\left(x^2+1\right)}{\left(x^2+1\right)\left(x-1\right)}\)

\(\Leftrightarrow1=ax^2-ax+bx-b+cx^2+c\)

\(\Leftrightarrow\left(a+c\right)x^2+\left(b-a\right)x+\left(c-b-1\right)=0\)

\(\Leftrightarrow\hept{\begin{cases}a+c=0\\b-a=0\\c-b-1=0\end{cases}\Leftrightarrow}a=-\frac{1}{2};b=-\frac{1}{2};c=\frac{1}{2}\)

Vậy .....

Bình luận (0)
 Khách vãng lai đã xóa
SD
Xem chi tiết
PP
18 tháng 6 2017 lúc 9:52

Phương trình đã cho tương đương:

\(\frac{1}{x\left(x^2+1\right)}=\frac{a\left(x^2+1\right)+bx^2+c}{\text{x}\left(x^2+1\right)}\)

<=> ax^2 + a + bx^2 +cx= 1

Nếu k cho điều kiện của a,b,c thì chỉ làm dc đến đó thôi, có lẽ pahri cần a,b,c nguyên chăng?

Bình luận (0)
HT
21 tháng 12 2018 lúc 20:23

\(\frac{1}{x\left(x^2+1\right)}=\frac{a}{x}+\frac{bx+c}{x^2+1}\)

\(\frac{1}{x+\left(x^2+1\right)}=\frac{\text{ã}^2+a+bx^2+cx}{x\left(x^2+1\right)}\)

\(\frac{1}{x\left(x^2+1\right)}=\frac{x^2\left(a+b\right)+cx+a}{x\left(x^2+1\right)}\)

Đồng nhất với phân thức \(\frac{1}{x\left(x^2+1\right)}\)ta được:

\(a+b=0\)\(c=0\)\(a=1\)

\(\Rightarrow b=-1\)

Vậy:\(\frac{1}{x\left(x^2+1\right)}=\frac{1}{x}-\frac{x}{x^2+1}\)

tích hộ nha.Học tốt 

Bình luận (0)
NK
Xem chi tiết
DT
Xem chi tiết
NA
Xem chi tiết
XT
Xem chi tiết
XT
10 tháng 11 2017 lúc 20:14

Chia đa thức cho đa thức,Xác định các hằng số a và b sao cho,x^4 + ax + b chia hết cho x^2 - 4,x^4 + ax^ + bx - 1 chia hết cho x^2 - 1,x^3 + ax + b chia hết cho x^2 + 2x - 2,Toán học Lớp 8,bài tập Toán học Lớp 8,giải bài tập Toán học Lớp 8,Toán học,Lớp 8

Chỉ ý kiến của mk thôi

chưa chắc đúng

Tham khảo nhé

Bình luận (0)