Những câu hỏi liên quan
VT
Xem chi tiết
NG
17 tháng 1 2022 lúc 22:28

Câu 16.

undefined

Hình vẽ tương đối thôi nha!!!

Bảo toàn động lương ta có:

\(\overrightarrow{p}=\overrightarrow{p_1}+\overrightarrow{p_2}\)

\(\Rightarrow p^2=p_2^2-p_1^2\)\(\Rightarrow p_2=\sqrt{p^2+p_1^2}\)

\(\Rightarrow m_2\cdot v_2=\sqrt{\left(m_1+m_2\right)\cdot v+m_1\cdot v_1}\)

\(\Rightarrow0,3\cdot v_2=\sqrt{[\left(0,5+0,3\right)\cdot3]^2+(0,5\cdot4)^2}=3,124\)

\(\Rightarrow v_2=10,41\)m/s

Bình luận (0)
TP
Xem chi tiết
TT
30 tháng 12 2022 lúc 1:27

Theo giả thiết, ta có:

\left( {\widehat {SC,\left( {ABC} \right)}} \right) = \widehat {SCA} = {30^^\circ } \Rightarrow SA = AC\tan {30^^\circ } = \frac{{a\sqrt 3 }}{3}

Vậy thể tích khối chóp S.ABC là:

Bình luận (0)
VT
Xem chi tiết
NL
2 tháng 1 2022 lúc 14:47

Phương trình hoành độ giao điểm (d) và (P):

\(x^2-2x-3=ax-a-3\)

\(\Leftrightarrow x^2-\left(a+2\right)x+a=0\) 

\(\Delta=\left(a+2\right)^2-4a=a^2+4>0;\forall a\Rightarrow\) (d) luôn cắt (P) tại 2 điểm pb

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_A+x_B=a+2\\x_Ax_B=a\end{matrix}\right.\)

Mặt khác do A, B thuộc (d) nên: \(\left\{{}\begin{matrix}y_A=ax_A-a-3\\y_B=ax_B-a-3\end{matrix}\right.\)

\(y_A+y_B=0\)

\(\Leftrightarrow a\left(x_A+x_B\right)-2a-6=0\)

\(\Leftrightarrow a\left(a+2\right)-2a-6=0\)

\(\Leftrightarrow a^2-6=0\)

\(\Leftrightarrow a=\pm\sqrt{6}\)

Bình luận (0)
MN
Xem chi tiết
H24
11 tháng 1 2023 lúc 22:10

1A(adj)

2D(n)

3A(adj)

4C(n)

5D(adj)

6C(adj)

7B(n)(Tham khảo c7)

8A(n)

9C(n)

10B(v)

11A(adv)

Bình luận (2)
VT
Xem chi tiết
TT
22 tháng 1 2022 lúc 17:48

\(\dfrac{x-3}{3x-5}< \dfrac{3x-5}{x-3}.\left(x\ne3;x\ne\dfrac{5}{3}\right).\)

\(\Leftrightarrow\dfrac{x-3}{3x-5}-\dfrac{3x-5}{x-3}< 0.\Leftrightarrow\dfrac{\left(x-3\right)^2-\left(3x-5\right)^2}{\left(3x-5\right)\left(x-3\right)}< 0.\)

\(\Leftrightarrow\dfrac{x^2-6x+9-\left(9x^2-30x+25\right)}{\left(3x-5\right)\left(x-3\right)}< 0.\) \(\Leftrightarrow\dfrac{x^2-6x+9-9x^2+30x-25}{\left(3x-5\right)\left(x-3\right)}< 0.\)

\(\Leftrightarrow\dfrac{-8x^2+24x-16}{\left(3x-5\right)\left(x-3\right)}< 0.\Leftrightarrow\dfrac{8x^2-24x+16}{\left(3x-5\right)\left(x-3\right)}>0.\)

\(\Leftrightarrow\dfrac{8\left(x^2-3x+2\right)}{\left(3x-5\right)\left(x-3\right)}>0.\Leftrightarrow\dfrac{\left(x-2\right)\left(x-1\right)}{\left(3x-5\right)\left(x-3\right)}>0.\)

Đặt \(\dfrac{\left(x-2\right)\left(x-1\right)}{\left(3x-5\right)\left(x-3\right)}=f\left(x\right).\)

Lập bảng xét dấu:

x\(-\infty\)              1                   \(\dfrac{5}{3}\)                      2                       3                       \(+\infty\)
x - 2          -           |       -           |         -             0           +            |            +
x - 1         -            0       +         |        +              |          +             |             +
3x - 5            -         |          -        0         +            |          +             |             +
x - 3             -        |           -       |          -             |           -             0            +
f (x)           +         0          -      ||          +            0           -             ||            +

Vậy \(\dfrac{\left(x-2\right)\left(x-1\right)}{\left(3x-5\right)\left(x-3\right)}=f\left(x\right)>0.\) \(\Leftrightarrow x\in\left(-\infty;1\right)\cup\left(\dfrac{5}{3};2\right)\cup\left(3;+\infty\right).\)

 

Bình luận (0)
BH
22 tháng 1 2022 lúc 17:41
Bình luận (0)
BH
22 tháng 1 2022 lúc 18:15

a)

      \(\left\{{}\begin{matrix}2x^2+7x-4\ge x^2-4\\\dfrac{2x-1}{x^2+x-2}< \dfrac{2x-5}{x^2+x-2}\end{matrix}\right.\)

<=>\(\left\{{}\begin{matrix}x^2+7\ge0\\\dfrac{2x-5-2x+1}{x^2+x-2}>0\end{matrix}\right.\)

<=>\(\left\{{}\begin{matrix}x\left(x+7\right)\ge0\\\dfrac{-4}{x^2+x-2}>0\end{matrix}\right.\)

 => \(\left\{{}\begin{matrix}x\left(x+7\right)\ge0\\\left(x-1\right)\left(x+2\right)< 0\end{matrix}\right.\)

ta có x+2>x-1

=>x-1<0 và x+2 >0 để thỏa điều kiện =>x<1 và x>-2(hay -2<x<1)(1)

vì -2<x<1 nên x+7>0

=>x\(\ge\)0 để thỏa điều kiện(2)
từ (1) và (2) =>0\(\le\)x<1 
b)

      \(\left\{{}\begin{matrix}\left(x-3\right)\left(\sqrt{2}-x\right)>0\\4x-3< 2\left(x+3\right)\end{matrix}\right.\)

<=>\(\left\{{}\begin{matrix}\left(x-3\right)\left(\sqrt{2}-x\right)>0\\2x-9< 0\end{matrix}\right.\)

<=>\(\left\{{}\begin{matrix}\left(x-3\right)\left(\sqrt{2}-x\right)>0\\x< \dfrac{9}{2}\end{matrix}\right.\)

có 2 TH xảy ra để thỏa điều kiện

TH1 (x-3)<0 và (\(\sqrt{2}\)-x)<0=>\(\sqrt{2}\)<x<3(nhận)

TH2 (x-3)>0 và (\(\sqrt{2}\)-x)>0=>3<x<\(\sqrt{2}\)(loại)

em nghĩ như nào làm như v thôi có gì sai chị xem và sửa hộ em nhá bucminh

Bình luận (0)
MN
Xem chi tiết
MN
Xem chi tiết
NL
26 tháng 12 2022 lúc 20:58

3.

Pt hoành độ giao điểm:

\(-x=x^3\Rightarrow x\left(x^2+1\right)=0\Rightarrow x=0\)

Pt có 1 nghiệm nên 2 đồ thị cắt nhau tại 1 điểm

4.

\(2^{2x^2-7x+5}=2^5\Rightarrow2x^2-7x+5=5\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{7}{2}\end{matrix}\right.\) \(\Rightarrow x_1+4x_2=14\)

5.

\(B=10a.a^2\sqrt{5}=10\sqrt{5}a^3\)

6.

\(B=\dfrac{1}{3}\pi R^2h\)

7.

Hàm bậc nhất trên bậc nhất nên đơn điệu trên đoạn đã cho

\(\Rightarrow\) min, max rơi vào 2 đầu mút

\(\Rightarrow M.m=y\left(-5\right).y\left(-2\right)=\dfrac{4}{55}\)

8.

\(lnx=-1\Rightarrow x=e^{-1}\)

Pt có 1 nghiệm

9.

Hàm \(y=\left(\dfrac{1}{2}\right)^x\) nghịch biến trên R 

10.

\(\log x\ge1\Rightarrow x\ge10\)

D đúng

Bình luận (0)
MN
Xem chi tiết
H24
7 tháng 2 2023 lúc 18:57

loading...  loading...  

Bình luận (0)
H24
7 tháng 2 2023 lúc 19:07

loading...  

Bình luận (0)
H24
7 tháng 2 2023 lúc 19:12

loading...  

Bình luận (0)
MN
Xem chi tiết