So sánh :\(\sqrt{2009}-\sqrt{2008};\sqrt{2008}-\sqrt{2007}\)
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
So sánh \(\frac{2008}{\sqrt{2009}}+\frac{2009}{\sqrt{2008}}\)và \(\sqrt{2008}+\sqrt{2009}\)
Ta có : \(\frac{2008}{\sqrt{2009}}+\frac{2009}{\sqrt{2008}}=\frac{2009-1}{\sqrt{2009}}+\frac{2008+1}{\sqrt{2008}}=\sqrt{2009}+\sqrt{2008}+\left(\frac{1}{\sqrt{2008}}-\frac{1}{\sqrt{2009}}\right)\)
Vì \(\frac{1}{\sqrt{2008}}>\frac{1}{\sqrt{2009}}\) nên \(\frac{1}{\sqrt{2008}}-\frac{1}{\sqrt{2009}}>0\)
\(\Rightarrow\sqrt{2009}+\sqrt{2008}+\left(\frac{1}{\sqrt{2008}}-\frac{1}{\sqrt{2009}}\right)>\sqrt{2009}+\sqrt{2008}\)
Hay \(\frac{2008}{\sqrt{2009}}+\frac{2009}{\sqrt{2008}}>\sqrt{2008}+\sqrt{2009}\)
so sánh\(\sqrt{2008}+\sqrt{2009}+\sqrt{2010}\)và\(\sqrt{2005}+\sqrt{2007}+\sqrt{2015}\)
So sánh
a/ \(\sqrt{2010} -\sqrt{2009} và \sqrt{2008} - \sqrt{2007}\)
So sánh: \(\sqrt{2008}+\sqrt{2009}+\sqrt{2010}\) và \(\sqrt{2005}+\sqrt{2007}+\sqrt{2015}\)
Ta có
\(\hept{\begin{cases}\sqrt{2008}+\sqrt{2005}< \sqrt{2015}+\sqrt{2009}\left(1\right)\\\sqrt{2010}+\sqrt{2007}< \sqrt{2015}+\sqrt{2009}\left(2\right)\end{cases}}\)
\(\Rightarrow\frac{1}{\sqrt{2008}+\sqrt{2005}}+\frac{1}{\sqrt{2010}+\sqrt{2007}}>\frac{2}{\sqrt{2015}+\sqrt{2009}}\)
\(\Leftrightarrow\frac{\sqrt{2008}-\sqrt{2005}}{3}+\frac{\sqrt{2010}-\sqrt{2007}}{3}>\frac{\sqrt{2015}-\sqrt{2009}}{3}\)
\(\Leftrightarrow\sqrt{2008}+\sqrt{2009}+\sqrt{2010}>\sqrt{2005}+\sqrt{2007}+\sqrt{2015}\)
A=√2008+√2009+√2010A=2008+2009+2010 và B=√2005+√2007+√2015
k và kb với mình nha !!!
So sánh: \(\left(2009+\sqrt{2007}\right)\left(2007+\sqrt{2007}\right)\&\left(2008+\sqrt{2007}\right)^2\)
So sánh \(\frac{2008}{\sqrt{2009}}+\frac{2009}{\sqrt{2008}}\) và \(\sqrt{2008}+\sqrt{2009}\)
Ta có :
\(\frac{2008}{\sqrt{2009}}+\frac{2009}{\sqrt{2008}}=\frac{2009}{\sqrt{2009}}-\frac{1}{\sqrt{2009}}+\frac{2008}{\sqrt{2008}}+\frac{1}{\sqrt{2008}}\)
\(=\sqrt{2008}+\sqrt{2009}+\frac{1}{\sqrt{2008}}-\frac{1}{\sqrt{2009}}\)
Mà \(\sqrt{2008}< \sqrt{2009}\Rightarrow\frac{1}{\sqrt{2008}}>\frac{1}{\sqrt{2009}}\Leftrightarrow\frac{1}{\sqrt{2008}}-\frac{1}{\sqrt{2009}}\)
\(\Leftrightarrow\sqrt{2008}+\sqrt{2009}+\frac{1}{\sqrt{2008}}-\frac{1}{\sqrt{2009}}>\sqrt{2008}+\sqrt{2009}\)
⇒ đpcm
so sánh \(\frac{2008}{\sqrt[]{2009}}+\frac{2009}{\sqrt[]{2008}}\) và \(\sqrt[]{2008}+\sqrt[]{2009}\)
Ta có : \(\frac{2008}{\sqrt{2009}}+\frac{2009}{\sqrt{2008}}\) = \(\frac{2009-1}{\sqrt{2009}}+\frac{2008+1}{\sqrt{2008}}\)
= \(\frac{2009}{\sqrt{2009}}-\frac{1}{\sqrt{2009}}+\frac{2008}{\sqrt{2008}}+\frac{1}{\sqrt{2008}}\)
= \(\frac{\left(\sqrt{2009}\right)^2}{\sqrt{2009}}-\frac{1}{\sqrt{2009}}+\frac{\left(\sqrt{2008}\right)^2}{\sqrt{2008}}+\frac{1}{\sqrt{2008}}\)
= \(\sqrt{2009}-\frac{1}{\sqrt{2009}}+\sqrt{2008}+\frac{1}{\sqrt{2008}}\)
Mà \(\frac{1}{\sqrt{2008}}>\frac{1}{\sqrt{2009}}\)
=> \(\frac{1}{\sqrt{2008}}-\frac{1}{\sqrt{2009}}>0\)
=> \(\frac{1}{\sqrt{2008}}-\frac{1}{\sqrt{2009}}+\sqrt{2008}+\sqrt{2009}>\sqrt{2008}+\sqrt{2009}\)
Vậy \(\frac{1}{\sqrt{2008}}-\frac{1}{\sqrt{2009}}+\sqrt{2008}+\sqrt{2009}>\sqrt{2008}+\sqrt{2009}\) .
so sánh A= 2\(\sqrt{1}\)\(+2\sqrt{3}+2\sqrt{5}+...+2\sqrt{2009}\)
B=\(2\sqrt{2}+2\sqrt{4}+2\sqrt{6}+...+2\sqrt{2008}+\sqrt{2010}\)
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
CMR: \(\dfrac{2009}{\sqrt{2008}}+\dfrac{2008}{\sqrt{2009}}>\sqrt{2008}+\sqrt{2009}\)
vế trái = \(\dfrac{2008+1}{\sqrt{2008}}+\dfrac{2009-1}{\sqrt{2009}}=\sqrt{2008}+\sqrt{2009}+\dfrac{1}{\sqrt{2008}}-\dfrac{1}{\sqrt{2009}}\)
vì \(\dfrac{1}{\sqrt{2008}}-\dfrac{1}{\sqrt{2009}}>0\) nên suy ra đpcm