Những câu hỏi liên quan
TH
Xem chi tiết
LN
Xem chi tiết
TT
13 tháng 8 2015 lúc 8:15

a) x^4 - x^3 + ax + b chia  cho x^2 -x - 2 dư 2x - 3 

=> x^4 - x^3 + ax + b = ( x^2 - x - 2 ) q(x) + 2x - 3 

=> x^4 - x^3 + ax + b = (  x + 1 )(x- 2 ) q(x) + 2x - 3 

Thay x = 2 ta có :

       2^4 - 2^3 + 2a + b = 0 + 2.2 - 3

        16  - 8 + 2a + b = 1

          8 + 2a + b = 1 

               2a + b     = -7 => b = -7 - 2a 

Thay x = -1 ta có :

           (-1)^4 - (-1)^3 + (-1).a + b = 0 + 2(-1) - 3

            1 + 1 - a + b                = -2 - 3

                2 - a + b                = -5

                  -a + b                  = - 7 

Thay b = -7 - 2 a ta có :

                  -a + -7 - 2a             = -7

                     -3a - 7                  = -7

                        -a                        = 0

                         a = 0 

b = - 7 -2a = -7 - 0 = -7 

Vậy a = 0 ; b = -7 

 

Bình luận (0)
TV
Xem chi tiết
NP
10 tháng 12 2017 lúc 22:10

Bài 1: 
a) (27x^2+a) : (3x+2) được thương là 9x - 6, dư là a + 12. 
Để 27x^2+a chia hết cho (3x+2) thì số dư a+12 =0 suy ra a = -12.

b, a=-2 
c,a=-20 

Bài2.Xác định a và b sao cho 
a)x^4+ax^2+1 chia hết cho x^2+x+1 
b)ax^3+bx-24 chia hết cho (x+1)(x+3) 
c)x^4-x^3-3x^2+ax+b chia cho x^2-x-2 dư 2x-3 
d)2x^3+ax+b chia cho x+1 dư -6, x-2 dư 21

Giải

a) Đặt thương của phép chia x^4+ax^2+1 cho x^2+x+1 là (mx^2 + nx + p) (do số bị chia bậc 4, số chia bậc 2 nên thương bậc 2) 
<=> x^4 + ax^2 + 1 = (x^2+ x+ 1)(mx^2 + nx + p) 
<=> x^4 + ax^2 + 1 = mx^4 + nx^3 + px^2 + mx^3 + nx^2 + px + mx^2 + nx + p (nhân vào thôi) 
<=> x^4 + ax^2 + 1 = mx^4 + x^3(m + n) + x^2(p + n) + x(p + n) + p 
Đồng nhất hệ số, ta có: 
m = 1 
m + n = 0 (vì )x^4+ax^2+1 không có hạng tử mũ 3 => hê số bậc 3 = 0) 
n + p = a 
n + p =0 
p = 1 
=>n = -1 và n + p = -1 + 1 = 0 = a 
Vậy a = 0 thì x^4 + ax^2 + 1 chia hết cho x^2 + 2x + 1 
Mấy cái kia làm tương tự, có dư thì bạn + thêm vào, vd câu d: 
Đặt 2x^3+ax+b = (x + 1)(mx^2 + nx + p) - 6 = (x - 2)(ex^2 + fx + g) + 21 

b) f(x)=ax^3+bx-24; để f(x) chia hết cho (x+1)(x+3) thì f(-1)=0 và f(-3)=0 
f(-1)=0 --> -a-b-24=0 (*); f(-3)=0 ---> -27a -3b-24 =0 (**) 
giải hệ (*), (**) trên ta được a= 2; b=-26 

c) f(x) =x^4-x^3-3x^2+ax+b 
x^2-x-2 = (x+1)(x-2). Gọi g(x) là thương của f(x) với (x+1)(x-2). Khi đó: 
f(x) =(x+1)(x-2).g(x) +2x-3 
f(-1) =0+2.(-1)-3 =-5; f(2) =0+2.2-3 =1 
Mặt khác f(-1)= 1+1-3-a+b =-1-a+b và f(2)=2^4-2^3-3.2^2+2a+b = -4+2a+b 
Giải hệ: -1-a+b=-5 và -4+2a+b =1 ta được a= 3; b= -1 

d) f(x) =2x^3+ax+b chia cho x+1 dư -6, x-2 dư 21. vậy f(-1)=-6 và f(2) =21 
f(-1) = -6 ---> -2-a+b =-6 (*) 
f(2)=21 ---> 2.2^3+2a+b =21 ---> 16+2a+b=21 (**) 
Giải hệ (*); (**) trên ta được a=3; b=-1

Bình luận (0)
PH
Xem chi tiết
H24
9 tháng 4 2020 lúc 15:52

\(f(x) = 2x^3 + ax + b\)

Gọi \(f(x) = 2x^3 + ax+b = (x+1).Q(x) + 6 \)  (1)

\(f(x) = 2x^3 + ax + b = (x-2).H(x) + 21\)  (2)

Thay x = -1 vào (1) ta được : 

\(-2 - a + b = 6 => b-a = 8\)  (3)

Thay x = 2 vào (2) ta được : 

\(16+2a+b=21 => 2a + b = 5\)  (4)

Từ (3) và (4) \(=> b-a - 2a - b = 8-5 \)

\(=> -3a = 3 <=> a = -1 => b = 7\)

Bình luận (0)
 Khách vãng lai đã xóa
NH
Xem chi tiết
FF
Xem chi tiết
LL
Xem chi tiết
LN
Xem chi tiết
PH
21 tháng 11 2018 lúc 19:12

Ta có: \(3x^3+ax+b=\left(x+1\right)Q\left(x\right)+6\) (1)

\(3x^3+ax+b=\left(x-3\right)P\left(x\right)+70\)(2)

Thay \(x=-1\) vào (1) và x = 3 vào (2), ta có: 

\(\hept{\begin{cases}3.\left(-1\right)^3+a.\left(-1\right)+b=6\\3.3^3+3a+b=70\end{cases}\Rightarrow\hept{\begin{cases}-a+b=9\\3a+b=-11\end{cases}}}\)

\(\Rightarrow\hept{\begin{cases}3a+b-\left(-a+b\right)=-11-9\\3a+b=-11\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}4a=-20\\3a+b=-11\end{cases}\Rightarrow\hept{\begin{cases}a=-5\\b=4\end{cases}}}\)

Bình luận (0)
TM
Xem chi tiết