Những câu hỏi liên quan
LH
Xem chi tiết
H24
19 tháng 4 2020 lúc 8:51

\(x^2+x+2=x^2+2.x+1+1-x=x^2+2.x.1+1^2+1-x\)

\(=\left(x+1\right)^2+1-x\)

Mk chỉ lm đc vậy thôi

Bình luận (0)
 Khách vãng lai đã xóa
NN
19 tháng 4 2020 lúc 9:22

\(x^2+x+2=x^2+2.\frac{1}{2}.x+\frac{1}{4}+\frac{7}{4}\)

\(=\left(x^2+2.\frac{1}{2}.x+\frac{1}{4}\right)+\frac{7}{4}=\left(x+\frac{1}{2}\right)^2+\frac{7}{4}\)

Vì \(\left(x+\frac{1}{2}\right)^2\ge0\forall x\)\(\Rightarrow\left(x+\frac{1}{2}\right)^2+\frac{7}{4}\ge\frac{7}{4}>0\)

\(\Rightarrow\)Đa thức đã cho vô nghiệm ( đpcm )

Bình luận (0)
 Khách vãng lai đã xóa
TH
Xem chi tiết
H24
8 tháng 5 2021 lúc 10:33

`x^2+x+6=0`

`<=>x^2+x+1/4+23/4=0`

`<=>(x+1/2)^2=-23/4(vô lý)`

`=>` vô nghiệm

Bình luận (0)
H24
8 tháng 5 2021 lúc 10:34

* Bạn tạo HĐT để chứng minh nó lớn hơn 0 là sẽ vô nghiệm.

Ta có : $x^2+x+6=\bigg(x^2+2.x.\dfrac{1}{2} + \dfrac{1}{4}\bigg) + \dfrac{23}{4}$

$ = \bigg(\dfrac{1}{2} + x\bigg) + \dfrac{23}{4}>0$

Do đó đa thức cho vô nghiệm.

Bình luận (0)
NA
8 tháng 5 2021 lúc 10:40

CMR :x2+ x +6  vô nghiệm

Ta có: x2+ x +6 = 0

x2 + \(\dfrac{1}{2}\)x + \(\dfrac{1}{2}\)x + \(\dfrac{1}{4}\)\(\dfrac{1}{4}\)+6

=( x2 + \(\dfrac{1}{2}\)x)+ ( \(\dfrac{1}{2}\)x + \(\dfrac{1}{4}\)) + (-  \(\dfrac{1}{4}\)+6)

= x ( x + \(\dfrac{1}{2}\)) + \(\dfrac{1}{2}\)( x + \(\dfrac{1}{2}\)) + \(\dfrac{23}{4}\)

= (x +\(\dfrac{1}{2}\)).(x +\(\dfrac{1}{2}\)) + \(\dfrac{23}{4}\)

= (x +\(\dfrac{1}{2}\))2  + \(\dfrac{23}{4}\)

Ta có : (x +\(\dfrac{1}{2}\))2 ≥ 0 ∀ x

=>  (x +\(\dfrac{1}{2}\))2  + \(\dfrac{23}{4}\) ≥ \(\dfrac{23}{4}\)

mà \(\dfrac{23}{4}\)> 0

=> (x +\(\dfrac{1}{2}\))2  + \(\dfrac{23}{4}\)vô nghiệm

=>x2+ x +6  vô nghiệm

 

 

 

Bình luận (0)
CT
Xem chi tiết
NM
5 tháng 4 2017 lúc 17:36

Đề sai rồi bạn

Đa thức vẫn có nghiệm là 1

16-15+14-13+12-1=0

Kiểm tra lại đề nhé

Bình luận (0)
H24
5 tháng 4 2017 lúc 17:35

ai tk mk thì mk tk lại

Bình luận (0)
CT
5 tháng 4 2017 lúc 17:38

Chứng minh rằng : Đa thức x6 - x5 + x4 - x3 + x2 - x + 1 vô nghiệm

Bình luận (0)
NL
Xem chi tiết
NT
25 tháng 2 2022 lúc 14:24

Bài 2: 

a: Sửa đề: \(x^2+2x+3\)

Đặt \(x^2+2x+3=0\)

\(\Delta=2^2-4\cdot1\cdot3=4-12=-8< 0\)

Do đó: Phương trình vô nghiệm

b: Đặt \(x^2+4x+6=0\)

\(\Leftrightarrow x^2+4x+4+2=0\)

\(\Leftrightarrow\left(x+2\right)^2+2=0\)(vô lý)

Bình luận (1)
MZ
Xem chi tiết
MZ
10 tháng 4 2021 lúc 20:38

Bằng 2 cách

Bình luận (0)
MN
10 tháng 4 2021 lúc 20:39

f(x) đề có cho bằng 0 không vậy em ? 

Bình luận (1)
NT
10 tháng 4 2021 lúc 20:45

Ta có: \(x^2+x+1\)

\(=x^2+2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}\)

\(=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\forall x\)

hay đa thức \(f\left(x\right)=x^2+x+1\) vô nghiệm

Bình luận (0)
VH
Xem chi tiết
LP
Xem chi tiết
NT
10 tháng 8 2023 lúc 20:16

P(x)=-8x^3+6x^3+2x^3+3x^4-3x^4+4x^2-2020+2025

=4x^2+5>=5>0 với mọi x

=>P(x) không có nghiệm

Bình luận (1)
HH
Xem chi tiết
NP
27 tháng 7 2019 lúc 20:09

\(\text{a)}P\left(x\right)=2x^2+2x-6x^2+4x^3+2-x^3\)

\(P\left(x\right)=3x^3-4x^2+2x+2\)

\(Q\left(x\right)=3-2x^4+3x+2x^4+3x^3-x\)

\(Q\left(x\right)=3x^3+2x+3\)

\(\text{b)}C\left(x\right)=P\left(x\right)+Q\left(x\right)\)

                 \(P\left(x\right)=3x^3-4x^2+2x+2\)

                 \(Q\left(x\right)=3x^3\)                \(2x+3\)

                                                                                

\(P\left(x\right)+Q\left(x\right)=6x^3-4x^2+4x+5\)

             \(\Rightarrow C\left(x\right)=6x^3-4x^2+4x+5\)

\(\text{c)}D\left(x\right)=Q\left(x\right)-P\left(x\right)\)

                 \(Q\left(x\right)=3x^3\)                \(2x+3\)

                  \(P\left(x\right)=3x^3-4x^2+2x+2\)

                                                                                    

\(Q\left(x\right)-P\left(x\right)=\)       \(4x^2\)             \(+1\)

             \(\Rightarrow D\left(x\right)=4x^2+1\)

Để \(D\left(x\right)\)có nghiệm thì:

         \(D\left(x\right)=0\)

\(\Rightarrow4x^2+1=0\)

Mà \(4x^2\ge0\)

\(\Rightarrow4x^2+1\ge1\)

\(\Rightarrow D\left(x\right)\ge1\)

\(\Rightarrow D\left(x\right)>0\)

Vậy đa thức \(D\left(x\right)\)vô nghiệm

Bình luận (0)
LL
Xem chi tiết
LC
14 tháng 4 2019 lúc 18:39

Ta có: (x-3)2 \(\ge0\forall x\)

\(\Rightarrow x^2\ge9\forall x\)

\(\Rightarrow x^2+\left(x-3\right)^2\ge9\forall x\)

Vậy đa thức trên vô nghiệm.

Bình luận (0)