chứng minh rằng : \(A=220^{119^{69}}+119^{69^{220}}+69^{220^{119}}\) chia hết cho 102
Chứng minh rằng:
A = \(220^{119^{69}}+119^{69^{220}}+69^{220^{119}}\)chia hết cho 102
đồng dư thức: chứng minh
220^119^69 +119^69^220 +69^ 220^19 chia hết cho 102
giúp mình với, cảm ơn mọi người
220 ≡ 1 ( mod 3 ) ⇒ \(220^{119^{69}}\) ≡ 1 ( mod 3 )
119 ≡ −1 ( mod 3 ) ⇒ \(119^{69^{220}}\) ≡ −1( mod 3 )
69 ≡ 0 ( mod 3 ) ⇒ \(69^{220^{119}}\) ≡ 0 ( mod 3 )
Do đó A ⋮ 3 ( dư 1 )
Tương tự ta có:
220 ≡ −1( mod 17 ) ⇒ \(220^{119^{69}}\) ≡ -1 ( mod 17 )
119 ≡ 0 ( mod 17 ) ⇒ \(119^{69^{220}}\) ≡ 0 ( mod 17 )
69 ≡ 1 ( mod 17 ) ⇒ \(69^{220^{119}}\) ≡ 1 ( mod 17 )
Suy ra A ⋮ 17 (2)
Lại có A là số chẵn (Vì \(69^{220^{119}}\), \(119^{69^{220}}\) là số lẻ, \(220^{119^{69}}\) là số chẵn)
Suy ra: A ⋮ 2 (3)
Vì 2, 3, 17 nguyên tố cùng nhau nên từ (1), (2), (3) suy ra: A ⋮ 2.3.17 hay A ⋮ 102
Cho \(M=220^{119^{69}}+119^{69^{220}}+69^{220^{119}}+\left(220+119+69\right)^{102}\) . chứng minh \(M⋮102\)
Câu 3: Chứng minh rằng: A = \(220^{119^{69}}+119^{69^{220}}+69^{220^{119}}\)⋮102
C/M : \(220^{119^{69}}+119^{69^{220}}+69^{220^{119}}\)chia hết cho 102
Gợi ý:(Làm ra dài lắm! Mình gợi ý cho bạn thôi!^^)
Sử dụng phương pháp đồng dư thức:
102=2.3.17 với ƯCLN(2,3,17)=1.
Chứng minh từng lũy thừa tầng chia hết cho 2,3,17.
=> Các lũy thừa tầng cộng lại chia hết cho 2.3.17=102.
cmr: \(220^{119^{69}}+119^{69^{220}}+69^{220^{119}}\)chia hết cho 102
cmr \(220^{119^{69}}+119^{69^{220}}+69^{220^{119}}\) chia hết cho 102
\(CMR:A=\left(220^{119^{69}}+119^{69^{220}}+69^{220^{119}}\right)\)chia hết cho 102
CMR:A = \(220^{119^{69}}+119^{69^{220}}+69^{220^{119}}\) chia hết cho 102
102 = 2.3.17
+) Chứng minh A chia hết cho 2
\(220^{119^{69}}=\left(....0\right)\)
\(69^{220}\) lẻ => \(119^{69^{220}}=\left(....9\right)\)
220119 tận cùng là 0 => kết qỉa là số chẵn => \(69^{220^{119}}=\left(....1\right)\)
=> A có tận cùng là chữ số 0 => A chia hết cho 2 (1)
+) A chia hết cho 3
220 đồng dư với 1 (mod 3) => \(220^{119^{69}}\) đồng dư với 1 mod 3
119 đồng dư với -1 mod 3 => \(119^{69^{220}}\) đồng dư với \(\left(-1\right)^{69^{220}}=-1\) (mod 3)
69 chia hết cho 3 nên \(69^{220^{119}}\) chia hết cho 3 hay \(69^{220^{119}}\) đồng dư với 0 (mod 3)
=> A đồng dư với 1 +(-1) + 0 = 0 (mod 3) =>A chia hết cho 3 (2)
+) A chia hết cho 17
220 đồng dư với (-1) mod 3 => \(220^{119^{69}}\) đồng dư với \(\left(-1\right)^{119^{69}}=-1\) ( mod 3)
119 chia hết cho 17 nên \(119^{69^{220}}\) chia hết cho 17
69 đồng dư với 1 mod 17 => \(69^{220^{119}}\) đồng dư với 1 mod 17
=> A đồng dư với (-1) + 0 + 1 = 0 mod 17
=> A chia hết cho 17 (3)
Từ (1)(2)(3) => A chia hết cho 2.3.17 = 102
\(220\equiv0\left(mod2\right)\) nên \(220^{119^{69}}\equiv0\left(mod2\right)\)
\(119\equiv1\left(mod2\right)\) nên \(119^{69^{220}}\equiv1\left(mod2\right)\)
\(69\equiv-1\left(mod2\right)\)nên \(69^{220^{119}}\equiv-1\left(mod2\right)\)
Vậy \(A\equiv0\left(mod2\right)\)hay A chia hết cho 2
Tương tự: A chia hết cho 3; A chia hết cho 17
Vì 2,3,17 là các snt => A chia hết cho 102