Phân tích đa thức thành nhân tử:
\(\left(x+3\right)^4+\left(x+5\right)^4-2\)
Phân tích đa thức thành nhân tử: \(\left(x+5\right)^2+4\left(x+5\right)\left(x-5\right)+4\left(x^2-10x+25\right)=0\)
\((x+5)^2+4(x+5)(x-5)+4(x^2-10x+25)=0\\\Rightarrow(x+5)^2+4(x+5)(x-5)+4(x^2-2\cdot x\cdot5+5^2)=0\\\Rightarrow(x+5)^2+2\cdot(x+5)\cdot2(x-5)+4(x-5)^2=0\\\Rightarrow(x+5)^2+2\cdot(x+5)\cdot2(x-5)+[2(x-5)]^2=0\\\Rightarrow[(x+5)+2(x-5)]^2=0\\\Rightarrow(x+5+2x-10)^2=0\\\Rightarrow(3x-5)^2=0\\\Rightarrow3x-5=0\\\Rightarrow3x=5\\\Rightarrow x=\frac53\\\text{#}Toru\)
Sao đề là phân tích mà lại "= 0" vậy bạn?
Phân tích đa thức thành nhân tử
\(5x\left(2x+3\right)+6x+9\)
\(3x\left(x+4\right)+48\left(x+4\right)+5\left(x+4\right)\)
\(5x(2x+3)+6x+9\\=5x(2x+3)+3(2x+3)\\=(2x+3)(5x+3)\)
a: \(5x\left(2x+3\right)+6x+9\)
\(=5x\left(2x+3\right)+\left(6x+9\right)\)
\(=5x\left(2x+3\right)+3\left(2x+3\right)\)
\(=\left(2x+3\right)\left(5x+3\right)\)
b: \(3x\left(x+4\right)+48\left(x+4\right)+5\left(x+4\right)\)
\(=\left(x+4\right)\left(3x+48+5\right)\)
=(x+4)(3x+53)
Phân tích đa thức thành nhân tử
\(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24\)
Ta có:
(x + 2)(x + 3)(x + 4)(x + 5) - 24
= [(x + 2)(x + 5)][(x + 3)(x + 4)] - 24
= (x2 + 5x + 2x + 10)(x2 + 4x + 3x + 12) - 24
= (x2 + 7x + 10)(x2 + 7x + 12) - 24
Đặt x2 + 7x + 10 = k
=> k(k + 2) - 24 = k2 + 2k - 24 = k2 + 6x - 4x - 24
= k(k + 6) - 4(k + 6)
= (k - 4)(k + 6)
=> (x + 2)(x + 3)(x + 4)(x + 5) - 24
= (x2 + 7x + 10 - 4)(x2 + 7x + 10 + 6)
= (x2 + 7x + 6)(x2 + 7x + 16)
\(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24\)
\(=\left[\left(x+2\right)\left(x+5\right)\right]\left[\left(x+3\right)\left(x+4\right)\right]-24\)
\(=\left(x^2+7x+10\right)\left(x^2+7x+12\right)-24\)(1)
Đặt \(x^2+7x+11=t\)thay vào (1) ta được:
\(\left(t-1\right)\left(t+1\right)-24\)
\(=t^2-1-24\)
\(=t^2-25\)
\(=\left(t-5\right)\left(t+5\right)\)Thay \(t=x^2+7x+11\)ta được:
\(\left(x^2+7x+11-5\right)\left(x^2+7x+11+5\right)\)
\(=\left(x^2+7x+6\right)\left(x^2+7x+16\right)\)
\(=\left(x^2+x+6x+6\right)\left(x^2+7x+16\right)\)
\(=\left[x\left(x+1\right)+6\left(x+1\right)\right]\left(x^2+7x+16\right)\)
\(=\left(x+1\right)\left(x+6\right)\left(x^2+7x+16\right)\)
\(\left(x+2\right).\left(x+5\right).\left(x+3\right).\left(x+4\right)-24\)
\(\left(x^2+7x+10\right)\left(x^2+7x+12\right)-24\)
Dat \(x^2+7x+10=y\)
ta co :\(y\left(y+2\right)-24=y^2+2y-24\)
\(y^2+6y-4y-24=\left(y^2+6y\right)-\left(4y+24\right)\)
\(y\left(y+6\right)-4\left(y+6\right)=\left(y-4\right)\left(y+6\right)\)
tra lai bien ta co
\(\left(x^2+7x+10-4\right)\left(x^2+7x+12+6\right)\)
\(\left(x^2+7x+6\right)\left(x^2+7x+18\right)=\left(x^2+6x+x+6\right)\left(x^2+7x+18\right)\)
\(\left(x+1\right)\left(x+6\right)\left(x^2+7x+18\right)\)
Phân tích đa thức thành nhân tử
\(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24\\ \)
\(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24\)
\(=\left(x^2+7x+10\right)\left(x^2+7x+12\right)-24\)
Let \(t=x^2+7x+10\) we have:
\(=t\left(t+2\right)-24=t^2+2t-24\)
\(=\left(t-4\right)\left(t+6\right)=\left(x^2+7x+10-4\right)\left(x^2+7x+10+6\right)\)
\(=\left(x^2+7x+6\right)\left(x^2+7x+16\right)\)
\(=\left(x+1\right)\left(x+6\right)\left(x^2+7x+16\right)\)
phân tích đa thức thành nhân tử :
a, \( \left(x-5\right)^2-4\left(x-3\right)^2+2\left(2x-1\right)\left(x-5\right)+\left(2x-1\right)^2\)
(x - 5)2 - 4(x - 3)2 + 2(2x - 1)(x - 5) + (2x - 1)2
= [(x - 5)2 + 2(2x - 1)(x - 5) + (2x - 1)2) - [2(x - 3)]2
= (x - 5 + 2x - 1)2 - (2x - 6)2
= (3x - 6)2 - (2x - 6)2
= (3x - 6 - 2x + 6)(3x - 6 + 2x - 6) = x(5x - 12)
( x - 5 )2 - 4( x - 3 )2 + 2( 2x - 1 )( x - 5 ) + ( 2x - 1 )2
= [ ( x - 5 )2 + 2( 2x - 1 )( x - 5 ) + ( 2x - 1 )2 ] - 22( x - 3 )2
= ( x - 5 + 2x - 1 )2 - ( 2x - 6 )2
= ( 3x - 6 )2 - ( 2x - 6 )2
= ( 3x - 6 - 2x + 6 )( 3x - 6 + 2x - 6 )
= x( 5x - 12 )
\(\left(x-5\right)^2-4\left(x-3\right)^2+2\left(2x-1\right)\left(x-5\right)+\left(2x-1\right)^2\)
\(=\left(x-5\right)^2+2\left(2x-1\right)\left(x-5\right)+\left(2x-1\right)^2-4\left(x-3\right)^2\)
\(=\left(x-5+2x-1\right)^2-\left(2x-6\right)^2\)
\(=\left(3x-6\right)^2-\left(2x-6\right)^2\)
\(=\left[\left(3x-6\right)-\left(2x-6\right)\right].\left[\left(3x-6\right)+\left(2x-6\right)\right]\)
\(=\left(3x-6-2x+6\right)\left(3x-6+2x-6\right)\)
\(=\left(5x-12\right)x\)
PHÂN TÍCH ĐA THỨC THÀNH NHÂN TỬ:
\(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24\)
Phân tích đa thức \(18x^3-\dfrac{8}{25}x\) thành nhân tử
a. \(\dfrac{2}{25}x\left(9x^2-4\right)=\dfrac{2}{25}x\left(3x-2\right)\left(3x+2\right)\)
b. \(2x\left(9x^2-\dfrac{4}{25}\right)=2x\left(3x-\dfrac{2}{5}\right)\left(3x+\dfrac{2}{5}\right)\)
Cách phân tích nào đúng, a hay b. Giải thích vì sao?
Phân tích đa thức thành nhân tử:
a) \(\left(xy\right)^2-xy-2\)
b) \(x^4-8x^3-16x^2+2\left(x^2-4x+4\right)-43\)
Lời giải:
a.
$(xy)^2-xy-2=(x^2y^2+xy)-(2xy+2)$
$=xy(xy+1)-2(xy+1)=(xy+1)(xy-2)$
b. Bạn xem lại đoạn $-16x^2$ là dấu - hay + vậy?
phân tích đa thức thành nhân tử \(x^2\cdot\left(x+4\right)^2-\left(x+4\right)^2-\left(x^2-1\right)\)
\(x^2\cdot\left(x+4\right)^2-\left(x+4\right)^2-\left(x^2-1\right)\)
\(=\left(x^2-1\right)\left(x+4\right)^2-\left(x^2-1\right)\)
\(=\left(x^2-1\right)\left[\left(x+4\right)^2-1\right]\)