Những câu hỏi liên quan
CN
Xem chi tiết
H24
20 tháng 7 2018 lúc 12:47

Áp dụng Pitago ta có : BC = 10

Áp dụng tính chất của tia phân giác ta có : BD/DC = AB/AC = 3/4

=> BD/BC = 3/7 => BD = 30/7 cm, CD = 40/7 cm

HD // AC => HD / AC = BD / BC

=> HD = 30/70.8 = 24/7 

Do góc HAD = 45 độ => T/g HAD vuông cân => AD^2 = 1152/49 => AD = \(\frac{24\sqrt{2}}{7}\)cm

Bình luận (0)
H24
Xem chi tiết
TT
17 tháng 3 2022 lúc 6:40

undefinedundefinedundefined

Bình luận (0)
TD
Xem chi tiết
TH
5 tháng 3 2020 lúc 21:26

a, dùng pytago tính ra BC = 10 cm

tam giác ABC có AD là phân giác (gt)

=> CD/AC = BD/AB (tính chất)

=> CD + DB/AB+AC = CD/AC + BD/AB

AB = 6; AC = 8; BC = 10 và CD + DB = BC

=> 10/14 = CD/8 = BD/6

=> CD = 40/7 và BD = 30/7

Bình luận (0)
 Khách vãng lai đã xóa
DG
Xem chi tiết
DG
Xem chi tiết
DT
10 tháng 7 2017 lúc 21:00

xét tam giác ABC vuông tại A có \(BC^2=AB^2+AC^2\left(pytagor\right)\)

\(\Rightarrow BC=10\left(cm\right)\)

xét tam giác ABC ta có AD  là đường phân giác => \(\frac{BD}{AB}=\frac{DC}{AC}=\frac{BC}{AB+AC}=\frac{5}{7}\)

=> BD= 30/7 (cm) ; DC= 40/7 (cm)

b/ có DH  vuông góc AB ; AC vuông góc AB (tam giác vuông)

=> DH//AC => \(\frac{DH}{AC}=\frac{BD}{BC}=\frac{BH}{AB}\)(hệ quả Thales) => \(DH=\frac{AC.BD}{BC}=\frac{24}{7}\left(cm\right)\)

ta có HAD=CAD (p/giác) ; HDA=CAD( 2 góc slt; DH//AC) => HAD=HDA => tam giác AHD cân tại H

mà tam giác AHD vuông tại H => tam giác AHD vuông cân tại H

=> \(AD^2=2DH^2\)=> \(AD=\frac{24\sqrt{2}}{7}\left(cm\right)\)

mình ko tính ra số thập phân. Bạn tự tính nhé. Chúc bn học tốt

Bình luận (0)
DG
11 tháng 7 2017 lúc 11:30

Thanks bạn

Bình luận (0)
DN
Xem chi tiết
NB
24 tháng 4 2016 lúc 15:13

D C H B A

Mình nói tóm tắt thôi nhé!

a) chứng minh được tam giác ABD = tam giác HBD (cạnh huyền - góc nhọn) => AD = DH (2 cạnh tương ứng)

b) tam giác HDC vuông tại H nên DC là cạnh lớn nhất => DC > DH; mà DH = AH (c/m trên) => DC > AD

c) Mình chưa nghĩ rabucminh

 

Bình luận (0)
NB
24 tháng 4 2016 lúc 15:26

Câu c là tính HC nhé bạn!

c) Tính BC bằng cách dùng định lí pytago trong tam giác ABC, ta có: BC = 10cm

BH + HC = BC = 10cm

BH = AB = 6cm

=> HC = 10 - 6 = 4 cm

Chúc bạn học tốt!hihi

Bình luận (0)
LC
Xem chi tiết
TT
Xem chi tiết
NT
8 tháng 4 2017 lúc 10:10

A B C 6 10 D H K

a, Xét \(\Delta ABC\)VUÔNG tại A

Áp dụng định lý pitago ta có:

\(BC^2=AB^2+AC^2\)

\(\Rightarrow AB^2=BC^2-AC^2\)

\(\Rightarrow AB^2=10^2-6^2\)

\(\Rightarrow AB^2=100-36\)

\(\Rightarrow AB^2=64\)

\(\Rightarrow AB=\sqrt{64}=8\)

VẬY AB=8 cm

b, Xét \(\Delta ABD\)và \(\Delta HBD\)CÓ:

\(\widehat{BAD}=\widehat{BHD}=90độ\)

\(\widehat{ABD}=\widehat{HBD}\)(do BD là tia phân giác của \(\widehat{B}\))

BD là cạnh chung

\(\Rightarrow\Delta ABD=\Delta HBD\)(ch-gn)

\(\Rightarrow AD=HD\)(2 CẠNH TƯƠNG ỨNG)

c,Do \(\Delta ABD=\Delta HBD\left(câub\right)\)

\(\Rightarrow\widehat{BDA}=\widehat{BDH}\)(2 góc tương ứng)

lại có \(\widehat{ADK}=\widehat{HDC}\)(đối đỉnh)

\(\Rightarrow\widehat{BDA}+\widehat{ADK}=\widehat{BDH}+\widehat{HDC}\)

\(\Rightarrow\widehat{BDK}=\widehat{BDC}\)

Xét \(\Delta KBD\) VÀ \(\Delta CBD\)CÓ:

\(\widehat{ABD}=\widehat{CBD}\)(Do BD là tia phân giác của \(\widehat{B}\))

BD là cạnh chung

\(\widehat{BDK}=\widehat{BDC}\left(cmt\right)\)

Do đó \(\Delta KBD=\Delta CBD\left(g-c-g\right)\)

\(\Rightarrow BK=BC\)(2 CẠNH TƯƠNG ỨNG)

\(\Rightarrow\Delta KBC\) cân tại B

Bình luận (0)
LN
8 tháng 4 2017 lúc 11:05

uhuhuhu sợ bài này lắm rồi !

Bình luận (0)
TT
10 tháng 4 2017 lúc 20:36

Có câu c ko bn???

Bình luận (0)
TG
Xem chi tiết
NT
3 tháng 12 2023 lúc 15:49

a: ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(AC^2=BC^2-AB^2=13^2-12^2=169-144=25\)

=>\(AC=\sqrt{25}=5\left(cm\right)\)

b: XétΔBAC có BD là phân giác

nên \(\dfrac{AD}{BA}=\dfrac{CD}{BC}\)

=>\(\dfrac{AD}{12}=\dfrac{CD}{13}\)

D nằm giữa A và C

=>AD+DC=AC

=>AD+DC=5(cm)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{AD}{12}=\dfrac{CD}{13}=\dfrac{AD+CD}{12+13}=\dfrac{5}{25}=0,2\)

=>\(AD=2\cdot12=2,4\left(cm\right);CD=2\cdot13=2,6\left(cm\right)\)

c: Xét ΔBAD vuông tại A và ΔBHD vuông tại H có

BD chung

\(\widehat{ABD}=\widehat{HBD}\)

Do đó: ΔBAD=ΔBHD

=>DA=DH

mà DA=2,4(cm)

nên DH=2,4(cm)

 

Bình luận (0)