Những câu hỏi liên quan
NL
Xem chi tiết
LQ
22 tháng 9 2017 lúc 20:30

tk nha 

Bình luận (0)
NL
22 tháng 9 2017 lúc 20:40

là sao

Bình luận (0)
LN
Xem chi tiết
HT
Xem chi tiết
DH
15 tháng 6 2019 lúc 10:27

Vì \(x^2,y^2,z^2\)là các số chính phương nên chia 8 dư 0, 1, 4.

Suy ra \(x^2+y^2+z^2\)chia 8 được số dư là một trong các số : 0, 1,,3, 4, 6.

Mà 1999 chia 8 dư 7 

Suy ra phương trình không có nghiệm nguyên

Bình luận (0)
LT
Xem chi tiết
NV
9 tháng 1 2021 lúc 20:37

1) Xét x=7k (k ∈ Z) thì x3 ⋮ 7

Xét x= \(7k\pm1\) thì x3 ⋮ 7 dư 1 hoặc 6.

Xét x=\(7k\pm2\) thì x3 ⋮ 7 dư 1 hoặc 6.

Xét x=\(7k\pm3\)\(\) thì x3 ⋮ 7 dư 1 hoặc 6.

Do vế trái của pt chia cho 7 dư 0,1,6 còn vế phải của pt chia cho 7 dư 2. Vậy pt không có nghiệm nguyên.

3) a, Ta thấy x,y,z bình đẳng với nhau, không mất tính tổng quát ta giả thiết x ≥ y ≥ z > 0 <=> \(\dfrac{1}{x}\le\dfrac{1}{y}\le\dfrac{1}{z}\) ,ta có: 

\(1=\dfrac{1}{z}+\dfrac{1}{y}+\dfrac{1}{z}\le\dfrac{3}{z}< =>z\le3\)

Kết luận: nghiệm của pt là ( x;y;z): (6:3:2), (4;4;2), (3;3;3) và các hoán vị của nó (pt này có 10 nghiệm).

 

Bình luận (0)
KN
Xem chi tiết
DQ
8 tháng 1 2021 lúc 11:48

Gọi ( \(x^',y^',z^'\)) là 1 nghiệm thoả mãn pt với \(z^'\)là số nhỏ nhất.

Không mất tính tổng quát, giả sử \(x^'\le y^'\le z^'\)

Mặt khác xét pt bậc 2 ẩn z :

\(z^2-\left(7x'y^'-2x^'-2y^'\right)z+\left(z^'+y^'\right)^2=0\)

Hiển nhiên pt này có 1 nghiệm z'

Theo định lý Viete thì nghiệm còn lại của nó là \(\frac{\left(x^'+y^'\right)^2}{z'}\inℤ\)

Như vậy \(\left(x',y',\frac{\left(x'+y'\right)^2}{z^'}\right)\)cũng là bộ số thoả mãn pt

Nếu giả sử x'+y' < z' \(\Rightarrow\frac{\left(x'+y'\right)^2}{z'}< z'\)vô lý vì ( x',y',z') cũng là 1 bộ số thoả mãn pt và vì tính nhỏ nhất của z'

Do đó ta phải có \(z'\le x'+y'\). Khai triển pt ban đầu và chia 2 vế của nó cho y'z'x' ta được:

\(7\le\frac{x'}{y'z'}+\frac{y'}{x'z'}+\frac{z'}{x'y'}+\frac{2}{x'}+\frac{2}{y'}+\frac{2}{z'}\)

\(\le\frac{1}{z'}+\frac{1}{x'}+\frac{x'+y'}{x'y'}+\frac{2}{x'}+\frac{2}{y'}+\frac{2}{z'}=\frac{4}{x'}+\frac{3}{y'}+\frac{2}{z'}\le\frac{10}{x'}\)

\(\Rightarrow x'=1\)

Bình luận (0)
 Khách vãng lai đã xóa
DQ
8 tháng 1 2021 lúc 11:52

Khi đó \(y'\le z'\le y'+1\)\(\Rightarrow\orbr{\begin{cases}z'=y\\z'=y'+1\end{cases}}\)

+ Nếu z'=y' thì ta có pt \(\left(1+2z'\right)^2=7z'^2\Leftrightarrow3z'^2-4z'-1=0\)\(\Leftrightarrow z'=\frac{2\pm\sqrt{7}}{3}\)(loại)

+ Nếu x'=y'+1 thì ta có pt \(\left(2+2z'\right)^2=7z'\left(z'+1\right)\Leftrightarrow3z'^2-z'-4=0\Leftrightarrow z\in\left\{-1;\frac{4}{3}\right\}\)(loại)

Vậy pt đã cho không có nghiệm nguyên ( đpcm)

Bình luận (0)
 Khách vãng lai đã xóa
NK
Xem chi tiết
H24
Xem chi tiết
NT
30 tháng 3 2021 lúc 20:21

\(x^2-y^2=2010\)

Với \(x\inℤ\)thì x^2 ; y^2 chia 4 dư 0 hoặc 1 

x^2 - y^2 chia 4 dư 0 hoặc 1 hoặc 3 ( 1 ) 

mà 2010 chia 4 dư 2  (2) 

từ (1) ; (2) Vậy  phương trình vô nghiệm 

Bình luận (0)
 Khách vãng lai đã xóa
ET
Xem chi tiết
H24
Xem chi tiết