Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
H24
Xem chi tiết
NT
18 tháng 1 2022 lúc 22:05

Gọi hai số lẻ bất kỳ là 2k+1 và 2a+1

\(\left(2k+1\right)^2+\left(2a+1\right)^2\)

\(=4k^2+4k+1+4a^2+4a+1\)

\(=4k^2+4a^2+4k+4a+2\) không là số chính phương

Bình luận (0)
H24
Xem chi tiết
OO
28 tháng 7 2018 lúc 15:26

tích mình đi

ai tích mình 

mình tích lại 

thanks

Bình luận (0)
H24
28 tháng 7 2018 lúc 15:30

Vì a và b là số lẻ nên a = 2k + 1, b= 2m + 1 (Với k, m ∈ N)

=> a2 + b2 = (2k + 1)2 + (2m + 1)2
= 4k2 + 4k + 1 + 4m2 + 4m + 1
= 4(k2 + k + m2 + m) + 2
=> a2 + b2 không thể là số chính phương

Bình luận (0)
PT
6 tháng 12 2020 lúc 22:04

Cho mình hỏi tại sao \(a^2+b^2=4\times\left(k^2+k+m^2+m\right)+2\)thì \(a^2+b^2\)không phải là số chính phương

Bình luận (0)
 Khách vãng lai đã xóa
TN
Xem chi tiết
H24
27 tháng 9 2017 lúc 21:21

Trung Nguyen

Vì a và b là số lẻ nên a = 2k + 1, b= 2m + 1 (Với k, m ∈ N)
=> a2 + b2 = (2k + 1)2 + (2m + 1)2
= 4k2 + 4k + 1 + 4m2 + 4m + 1
= 4(k2 + k + m2 + m) + 2
=> a2 + b2 không thể là số chính phương

Bình luận (0)
BD
27 tháng 9 2017 lúc 21:23

Binh phuong cua 1 so le dong du 1 (mod 4)

Suy ra tong binh phuong cua 2 so le bat ki dong du 2 (mod 4)

Ma scp dong du 0 hoac 1 (mod 4)

Vay tong binh phuong cua 2 so le bat ky khong phai la scp

Bình luận (0)
vu
27 tháng 9 2017 lúc 21:27

Vì a và b là số lẻ nên a = 2k + 1, b= 2m + 1 (Với k, m ∈ N)
=> a2 + b2 = (2k + 1)2 + (2m + 1)2
= 4k2 + 4k + 1 + 4m2 + 4m + 1
= 4(k2 + k + m2 + m) + 2
=> a2 + b2 không thể là số chính phương

Bình luận (0)
TY
Xem chi tiết
TY
26 tháng 7 2016 lúc 16:34

mau lên các bạn!

Bình luận (0)
LL
Xem chi tiết
HT
Xem chi tiết
H24
22 tháng 1 2021 lúc 20:55

Vì a và b là số lẻ nên a = 2k + 1 ; b = 2m + 1 ( Với k;m \(\in\)N )

=> a2 + b2 = ( 2k + 1 )2 + ( 2m + 1 )2 = 4k2 + 4k + 1 + 4m2 + 4m + 1 = 4 ( k2 + k + m2 + m  ) + 2 

=> a2 + b2 không là số chính phương

Bình luận (0)
 Khách vãng lai đã xóa
HV
Xem chi tiết
DH
26 tháng 11 2021 lúc 22:29

Gọi ba tự nhiên lẻ bất kì lần lượt là \(2m+1,2n+1,2p+1\).

Ta có: \(\left(2m+1\right)^2+\left(2n+1\right)^2+\left(2p+1\right)^2\)

\(=4m^2+4m+1+4n^2+4n+1+4p^2+4p+1\)

\(\equiv3\left(mod4\right)\)

mà số chính phương khi chia cho \(4\)chỉ có thể dư \(0\)hoặc \(1\).

Do đó ta có đpcm. 

Bình luận (0)
 Khách vãng lai đã xóa
LV
Xem chi tiết
NL
3 tháng 4 2016 lúc 16:47

Gọi 2 số lẻ bất kì là a và b

a và b lẻ nên  a = 2k + 1,   b= 2m + 1 (Với k, m  N).

=> a2 + b2 = (2k + 1)2 + ( 2m + 1)2 = 4k2 + 4k + 1 + 4m2 + 4m + 1

                = 4 (k2 + k + m2 + m) + 2

               => a2 + b2  không thể là số chính phương

Bình luận (0)
LQ
Xem chi tiết