Những câu hỏi liên quan
TH
Xem chi tiết
LH
15 tháng 7 2016 lúc 16:46

Bài 7 :43^1 =43. tận cùng là số 3 

43^2= 1849 tận cùng là số 9 

43^3 =79507 tận cùng là số 7 

43^4 =3418801 tận cùng là số 1 

43^5 = 147008443 tiếp tục tận cùng là số 3 

vậy quy luật của nó cứ lặp đi lặp lại theo dãy 4 số 3 - 9 - 7 - 1 

ta có 43 chia 4 dư 3. vậy tận cùng của số 43^43 là 7 

tương tự ta có số tận cùng của 17^17 là 7. 

vậy thì 43^43 - 17^17 ra số có tận cùng là 0. mà số có tận cùng là 0 thì luôn chia hết cho 10 (điều phải chứng minh)

Bài 8 : \(7^{1000}=\left(7^2\right)^{500}=49^{500}\)

\(3^{1000}=\left(3^2\right)^{500}=9^{500}\)

Ta có : lũy thừa tận cùng là 9 khi nâng bậc lũy thừa chẵn nên tận cùng là 1.

=> \(49^{500}\) tận cùng là 1

=> \(9^{500}\) tận cùng là 1

=> (...1) - (....1) = (....0)

Vì tận cùng là 0 nên chia hết cho 10 

Vậy  71000 - 31000 chia hết cho 10 (đpcm)

Bình luận (0)
LH
15 tháng 7 2016 lúc 16:36

Câu 8 thiếu số 0

Bình luận (2)
pu
14 tháng 11 2018 lúc 20:19

Bài 7 :43^1 =43. tận cùng là số 3

43^2= 1849 tận cùng là số 9

43^3 =79507 tận cùng là số 7

43^4 =3418801 tận cùng là số 1

43^5 = 147008443 tiếp tục tận cùng là số 3

vậy quy luật của nó cứ lặp đi lặp lại theo dãy 4 số 3 - 9 - 7 - 1

ta có 43 chia 4 dư 3. vậy tận cùng của số 43^43 là 7

tương tự ta có số tận cùng của 17^17 là 7.

vậy thì 43^43 - 17^17 ra số có tận cùng là 0. mà số có tận cùng là 0 thì luôn chia hết cho 10 (điều phải chứng minh)

Bài 8 : 71000=(72)500=4950071000=(72)500=49500

31000=(32)500=950031000=(32)500=9500

Ta có : lũy thừa tận cùng là 9 khi nâng bậc lũy thừa chẵn nên tận cùng là 1.

=> 4950049500 tận cùng là 1

=> 95009500 tận cùng là 1

=> (...1) - (....1) = (....0)

Vì tận cùng là 0 nên chia hết cho 10

Vậy 71000 - 31000 chia hết cho 10 (đpcm)

Bình luận (0)
H24
Xem chi tiết
H24
26 tháng 2 2017 lúc 19:45

Trả lời nhanh giùm mih zới!!

Bình luận (0)
DT
Xem chi tiết
TL
1 tháng 9 2017 lúc 20:12

Ta có :

a . A = 1 + 3 + 32 + 33 + ... + 399

         = ( 1 + 3 ) + ( 32 + 33 ) + ( 34 + 35 ) + ... + ( 398 + 399 )

         = 1. ( 1 + 3 ) + 32 . ( 1 + 3 ) + 34 . ( 1 + 3 ) + ... + 398 . ( 1 + 3 )

         = 1 . 4 + 32 . 4 + 34 . 4 + ... + 398 . 4

         = ( 1 + 32 + 34 + ... + 398 ) .4 \(⋮\)4 ( đpcm ) .

b . Vì 164 = 41 . 4

    Nên nếu A chia hết cho 41 thì A cũng chia hết cho 164 ( do A chia hết cho 4 )

          

Bình luận (0)
DT
1 tháng 9 2017 lúc 20:40

cảm ơn bạn.

Bình luận (0)
DT
Xem chi tiết
DV
13 tháng 11 2014 lúc 21:54

71000 ,là 1 số lẻ .  301000 luân là số chẵn mà ; 1 số chẵn trừ đi 1 số lẻ bao giờ cũng cho kết quả lẻ

nên 71000- 301000 = ( 1 số lẻ ) không thể chia hết cho 10 đâu THANH ạ

Bình luận (0)
NH
17 tháng 11 2016 lúc 10:05

Chắc bạn đánh sai đề, đúng ra phải là 3 chứ không phải 30 đâu Thanh ơi

Bình luận (0)
LA
17 tháng 7 2017 lúc 8:11

Ta có

71000 =(7^4)^250=2401^250=(.....1)

3^1000=(3^4)^250=81^250(.....1)

                      Suy ra 7^1000-3^1000=(....1)-(.....1)=(......0)

Do 7^1000-3^1000 có tận cùng là 0 nên chia hết cho 10

Bình luận (0)
HM
Xem chi tiết
DT
Xem chi tiết
H24
1 tháng 9 2017 lúc 20:32

mk biết làm câu a thôi :(

Bình luận (0)
DT
1 tháng 9 2017 lúc 20:38

mình cũng chỉ làm được câu a thôi. hì hì

Bình luận (0)
HM
Xem chi tiết
AH
3 tháng 12 2023 lúc 0:02

Lời giải:
\(10^{100}+10^{1000}+7=(10^{100}-1)+(10^{1000}-1)+9\\ =\underbrace{999...9}_{100}+\underbrace{999...9}_{1000}+9\)

Tổng này chia hết cho 9 do 3 số hạng đều chia hết cho 9.

Bình luận (0)
MT
Xem chi tiết
TN
Xem chi tiết
LL
25 tháng 8 2016 lúc 21:34

a/ 8^7-2^18=1835008 chia hết cho 14=131072                            

b/10^6-5^7=921875 chia hết cho 59=15625

7^6+7^5-7^4=132055  hết cho 55=2401

Bình luận (0)
LH
10 tháng 9 2016 lúc 22:11

a) 8^7-2^18= (2^3)-2^18=2^21-2^18=2^17 * (2^4-2)=2^17 * 14

14 chia hết cho 14 => ĐPCM

b) 10^6-5^7=5^6(2^6 - 5)=5^6 * 59

59 chia hết 59 => ĐPCM

c) 7^6 + 7^5 - 7^4 = 7^4 ( 7^2 + 7 - 1) = 7^4 * 55

55 cha hết 5 => ĐPCM

d) 16^5 + 2^15 = (2^4)^5 + 2^15= 2^15 * ( 2^5 + 1) = 2^15 * 33

33 chia hết 33 => ĐPCM

e và f chịu

g thì tính chữ số tận cùn của tổng đó

h) = 2^10 * (1 + 2 + 2^2) = 2^10 * 7

7 chia hết cho 7 => nó là 1 số tự nhiên

i chịu

Bình luận (0)
BD
23 tháng 9 2016 lúc 15:01

a/ 8^7 - 2^18 chia hết cho 14

b/ 10^6 - 5^7 chia hết cho 59

c/ 7^6 + 7^5 - 7^4 chia hết cho 55

d/ 16^5 + 2^15 chia hết cho 33

e/ 36^36 - 9^10 chia hết cho 45

f/ 81^7 - 27^9 - 9^13 chia hết cho 405

g/ 7^1000 - 3^1000 chia hết cho 10 

h/ ( 2^10 + 2^11 + 2^12 ) : 7 là một số tự nhiên 

i/ 313^5.299 - 313^6.36 chia hết cho 7

a) 8^7-2^18= (2^3)-2^18=2^21-2^18=2^17 * (2^4-2)=2^17 * 14

14 chia hết cho 14 => ĐPCM

b) 10^6-5^7=5^6(2^6 - 5)=5^6 * 59

59 chia hết 59 => ĐPCM

c) 7^6 + 7^5 - 7^4 = 7^4 ( 7^2 + 7 - 1) = 7^4 * 55

55 cha hết 5 => ĐPCM

d) 16^5 + 2^15 = (2^4)^5 + 2^15= 2^15 * ( 2^5 + 1) = 2^15 * 33

33 chia hết 33 => ĐPCM

e và f chịu

g thì tính chữ số tận cùn của tổng đó

h) = 2^10 * (1 + 2 + 2^2) = 2^10 * 7

7 chia hết cho 7 => nó là 1 số tự nhiên

Bình luận (0)