tính tổng S= 1/1.3+ 1/2.4+ 1/3.5+........+ 1/7.9+1/8.10
Tính tổng S=1/1.3 +1/2.4+ 1/3.5+....+1/7.9 +1/8.10
S=(1/1.3+1/3.5+.....+1/7.9) + (1/2.4+1/4.6+....+1/8.10)
2S=1/2.(1-1/9+(1/2-1/10))
2S=1/2.(8/9 + 2/5)
2S=1/2.58/45
2S=29/45
S=29/45:2
S=29/90
S=(1/1.3+1/3.5+.....+1/7.9) + (1/2.4+1/4.6+....+1/8.10)
2S=1/2.(1-1/9+(1/2-1/10))
2S=1/2.(8/9 + 2/5)
2S=1/2.58/45
2S=29/45
S=29/45:2
S=29/90
S = (1/1.3 + 1/3.5 + ... + 1/7.9) + (1/2.4 + 1/4.6 + ... + 1/8.10)
S = 2(1/1 - 1/3 + 1/3 - 1/5 + ... + 1/7 - 1/9) + 1/2(1/2 - 1/4 + 1/4 - 1/6 + ... + 1/8 - 1/10)
S = 2.(1 - 1/9) + 1/2.(1/2 - 1/10)
S = 16/9 + 1/5 = 89/45
Tính tổng S= 1/1.3 + 1/2.4 + 1/3.5+...+1/7.9 + 1/8.10
Tính tổng S= 1/1.3 + 1/2.4 + 1/3.5 + ...+1/7.9 + 1/8.10
Tính tổng: \(S=\frac{1}{1.3}-\frac{1}{2.4}+\frac{1}{3.5}-\frac{1}{4.6}+\frac{1}{5.7}-\frac{1}{6.8}+\frac{1}{7.9}-\frac{1}{8.10}\)
\(S=\frac{1}{1.3}-\frac{1}{2.4}+\frac{1}{3.5}-\frac{1}{4.6}+\frac{1}{5.7}-\frac{1}{6.8}+\frac{1}{7.9}-\frac{1}{8.10}\)
\(=\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}\right)-\left(\frac{1}{2.4}-\frac{1}{4.6}-\frac{1}{6.8}-\frac{1}{8.10}\right)\)
\(=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-...+\frac{1}{7}-\frac{1}{9}\right)-\frac{1}{2}\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-...+\frac{1}{8}-\frac{1}{10}\right)\)
\(=\frac{1}{2}\left(1-\frac{1}{9}\right)-\frac{1}{2}\left(\frac{1}{2}-\frac{1}{10}\right)\)
\(=\frac{1}{2}.\frac{8}{9}-\frac{1}{2}.\frac{2}{5}\)
\(=\frac{4}{9}-\frac{1}{5}\)
\(=\frac{11}{45}\)
Tính tổng: \(S=\frac{1}{1.3}-\frac{1}{2.4}+\frac{1}{3.5}-\frac{1}{4.6}+\frac{1}{5.7}-\frac{1}{6.8}+\frac{1}{7.9}-\frac{1}{8.10}\)
\(A=\frac{1}{1.3}-\frac{1}{2.4}+\frac{1}{3.5}-\frac{1}{4.6}+\frac{1}{5.7}-\frac{1}{6.8}+\frac{1}{7.9}-\frac{1}{8.10}\)
\(A=\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}\right)-\left(\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+\frac{1}{8.10}\right)\)
\(A=\frac{1}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}\right)-\frac{1}{2}\left(\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+\frac{2}{8.10}\right)\)
\(A=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}\right)-\frac{1}{2}\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+\frac{1}{8}-\frac{1}{10}\right)\)
\(A=\frac{1}{2}\left(1-\frac{1}{9}\right)-\frac{1}{2}\left(\frac{1}{2}-\frac{1}{10}\right)\)
\(A=\frac{4}{9}-\frac{1}{5}=\frac{11}{45}\)
\(S=\frac{1}{1.3}-\frac{1}{2.4}+\frac{1}{3.5}-\frac{1}{4.6}+\frac{1}{5.7}-\frac{1}{6.8}+\frac{1}{7.9}-\frac{1}{8.10}\)
\(S=\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}\right)-\left(\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+\frac{1}{8.10}\right)\)
\(S=\frac{1}{2}\left(1-\frac{1}{3}+...+\frac{1}{7}-\frac{1}{9}\right)-\frac{1}{2}\left(\frac{1}{2}-\frac{1}{4}+...+\frac{1}{8}-\frac{1}{10}\right)\)
\(S=\frac{1}{2}\left(1-\frac{1}{9}\right)-\frac{1}{2}\left(\frac{1}{2}-\frac{1}{10}\right)\)
\(S=\frac{1}{2}.\frac{8}{9}-\frac{1}{2}.\frac{2}{5}\)
\(S=\frac{4}{9}-\frac{1}{5}\)
\(S=\frac{11}{45}\)
\(\frac{x}{2^2}\)+\(\frac{x}{2^3}\) +\(\frac{x}{2^4}\) =\(\frac{x}{3^2}\) +\(\frac{x}{3^3}\) +\(\frac{x}{3^4}\) là x =
tính tổng s = 1/1.3+1/2.4+1/3.5.........1/7.9+1/8.10
giúp mik nhé thank
Ta có: \(2S=\dfrac{2}{1\cdot3}+\dfrac{2}{2\cdot4}+\dfrac{2}{3\cdot5}+...+\dfrac{2}{7\cdot9}+\dfrac{2}{8\cdot10}\)
\(\Leftrightarrow2S=\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{7}-\dfrac{1}{9}+\dfrac{1}{8}-\dfrac{1}{10}\)
\(\Leftrightarrow2S=1+\dfrac{1}{2}-\dfrac{1}{9}-\dfrac{1}{10}=\dfrac{58}{45}\)
\(\Rightarrow S=\dfrac{29}{45}\)
Ta có:
\(S=\dfrac{1}{1.3}+\dfrac{1}{2.4}+\dfrac{1}{3.5}+...+\dfrac{1}{7.9}+\dfrac{1}{8.10}\)
\(=\left(\dfrac{1}{1.3}+\dfrac{1}{3.5}+...+\dfrac{1}{7.9}\right)\) \(+\left(\dfrac{1}{2.4}+\dfrac{1}{4.6}+...+\dfrac{1}{8.10}\right)\)
Đặt \(A=\dfrac{1}{1.3}+\dfrac{1}{3.5}+...+\dfrac{1}{7.9}\)
\(=\dfrac{1}{2}\left(\dfrac{2}{1.3}+\dfrac{2}{3.5}+...+\dfrac{2}{7.9}\right)\)
\(=\dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{7}-\dfrac{1}{9}\right)\)
\(=\dfrac{1}{2}\left(1-\dfrac{1}{9}\right)=\dfrac{4}{9}\)
Đặt \(B=\dfrac{1}{2.4}+\dfrac{1}{4.6}+...+\dfrac{1}{8.10}\)
\(=\dfrac{1}{2}\left(\dfrac{2}{2.4}+\dfrac{2}{4.6}+...+\dfrac{2}{8.10}\right)\)
\(=\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{6}+...+\dfrac{1}{8}-\dfrac{1}{10}\right)\)
\(=\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{10}\right)=\dfrac{1}{5}\)
\(\Rightarrow S=A+B=\dfrac{4}{9}+\dfrac{1}{5}=\dfrac{29}{45}\)
Vậy \(S=\dfrac{29}{45}\)
S =1/1.3-1/2.4+1/3.5-1/4.6+1/5.7 - 1/6.8+1/7.9-1/8.10
\(S=\frac{1}{1.3}-\frac{1}{2.4}+\frac{1}{3.5}-\frac{1}{4.6}+\frac{1}{5.7}-\frac{1}{6.8}+\frac{1}{7.9}-\frac{1}{8.10}\)
\(S=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{2}-\frac{1}{4}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{7}-\frac{1}{9}=\frac{1}{8}-\frac{1}{10}\right)\)
\(S=\frac{1}{2}\left(1+\frac{1}{2}-\frac{1}{9}-\frac{1}{10}\right)\)
\(S=\frac{1}{2}.\left(\frac{58}{45}\right)\)
\(S=\frac{29}{45}\)
S =1/1.3-1/2.4+1/3.5-1/4.6+1/5.7 - 1/6.8+1/7.9-1/8.10
\(=\left(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{7.9}\right)+\left(\frac{1}{2.4}+\frac{1}{4.6}+...+\frac{1}{8.10}\right)\)
\(=\frac{1}{2}\left(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{7.9}\right)+\frac{1}{2}\left(\frac{1}{2.4}+\frac{1}{4.6}+...+\frac{1}{8.10}\right)\)
\(=\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{7}-\frac{1}{9}\right)+\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+...+\frac{1}{8}-\frac{1}{10}\right)\)
\(=\left(1-\frac{1}{9}\right)+\left(\frac{1}{2}-\frac{1}{10}\right)\)
\(=\frac{8}{9}+\frac{2}{5}\)
\(=\frac{58}{45}\)
viết đề hẳn hoi đi đề thì xấu còn bày đặt làm càn
\(S=\frac{1}{1.3}-\frac{1}{2.4}+\frac{1}{3.5}-\frac{1}{4.6}+\frac{1}{5.7}-\frac{1}{6.8}+\frac{1}{7.9}-\frac{1}{8.10}\)
\(S=\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}\right)-\frac{1}{2.4}-\frac{1}{4.6}-\frac{1}{6.8}-\frac{1}{8.10}\)
\(S=\frac{1}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}\right)-\left(\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+\frac{1}{8.10}\right)\)
\(S=\frac{1}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}\right)-\frac{1}{2}\left(\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+\frac{2}{8.10}\right)\)
\(S=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}\right)-\frac{1}{2}\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+\frac{1}{8}-\frac{1}{10}\right)\)
\(S=\frac{1}{2}\left(1-\frac{1}{9}\right)-\frac{1}{2}\left(\frac{1}{2}-\frac{1}{10}\right)\)
\(S=\frac{1}{2}\left(1-\frac{1}{9}-\frac{1}{2}+\frac{1}{10}\right)\)
\(S=\frac{1}{2}.\frac{22}{45}=\frac{11}{45}\)
\(S=\frac{1}{1.3}-\frac{1}{2.4}+\frac{1}{3.5}-\frac{1}{4.6}+\frac{1}{5.7}-\frac{1}{6.8}+\frac{1}{7.9}-\frac{1}{8.10}\)
\(S=\frac{1}{2}.\left[\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}\right)-\left(\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+\frac{2}{8.10}\right)\right]\)
\(S=\frac{1}{2}.\left[\left(1-\frac{1}{3}+...+\frac{1}{7}-\frac{1}{9}\right)-\left(\frac{1}{2}-\frac{1}{4}+...+\frac{1}{8}-\frac{1}{10}\right)\right]\)
\(S=\frac{1}{2}.\left[\left(1-\frac{1}{9}\right)-\left(\frac{1}{2}-\frac{1}{10}\right)\right]\)
\(S=\frac{1}{2}.\left(\frac{8}{9}-\frac{2}{5}\right)\)
\(S=\frac{1}{2}.\frac{22}{45}=\frac{11}{45}\)
\(S=\frac{1}{1.3}-\frac{1}{2.4}+\frac{1}{3.5}-\frac{1}{4.6}+\frac{1}{5.7}-\frac{1}{6.8}+\frac{1}{7.9}-\frac{1}{8.10}\)
=> \(S=\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}\right)+\left(\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+\frac{1}{8.10}\right)\)
=> \(S=\frac{1}{2}\left(1-\frac{1}{3}+.....+\frac{1}{7}-\frac{1}{9}\right)+\frac{1}{2}\left(\frac{1}{2}-\frac{1}{4}+....+\frac{1}{8}-\frac{1}{10}\right)\)
=> \(S=\frac{1}{2}\left(1-\frac{1}{9}\right)+\frac{1}{2}\left(\frac{1}{2}-\frac{1}{10}\right)\)
=> \(S=\frac{1}{2}.\frac{8}{9}+\frac{1}{2}.\frac{2}{5}\)
=> \(S=\frac{4}{9}+\frac{1}{5}\)
=> \(S=\frac{29}{45}\)
Tính tổng
A= 1/1.3+1/2.4+1/3.5+...+1/7.9+1/8.10
\(A=\dfrac{1}{1.3}+\dfrac{1}{2.4}+\dfrac{1}{3.5}+...+\dfrac{1}{7.9}+\dfrac{1}{8.10}\)
\(A=\left(\dfrac{1}{1.3}+\dfrac{1}{3.5}+...+\dfrac{1}{7.9}\right)+\left(\dfrac{1}{2.4}+\dfrac{1}{4.6}+...+\dfrac{1}{8.10}\right)\)
\(2A=\dfrac{1}{2}\left[1-\dfrac{1}{9}+\left(\dfrac{1}{2}-\dfrac{1}{10}\right)\right]\)
\(2A=\dfrac{1}{2}\left(\dfrac{8}{9}+\dfrac{2}{5}\right)\)
\(2A=\dfrac{1}{2}.\dfrac{58}{45}\)
\(2A=\dfrac{29}{45}\)
\(A=\dfrac{29}{45}:2=\dfrac{29}{90}\)
A= 1/1.3+1/2.4+1/3.5+...+1/7.9+1/8.10
A = (1/1.3+1/3.5 + 1/5.7 + 1/7.9) + (1/2.4 + 1/4.6 + 1/6.8 + 1/8.10)
A = 1/2. (2/1.3+2/3.5 + 2/5.7 + 2/7.9) + 1/2. (2/2.4 + 2/4.6 + 2/6.8 + 2/8.10)
A= 1/2.(1-1/9) + 1/2.(1/2-1/10)
A = 1/2.8/9 + 1/2.2/5
A = 4/9 + 1/5
A = 20/45 + 9 /45
A = 29/45