1. Chứng tỏ rằng phân số \(\frac{2n+5}{3n+7}\)là phân số tối giản với mọi n\(\in\)Z
chứng tỏ phân số 2n + 5 / 3n + 7 là phân số tối giản với mọi ( n thuộc Z)
Gọi ƯCLN(2n + 5,3n + 7) = d (d \(\inℤ;d\ne0\))
=> Ta có :\(\hept{\begin{cases}2n+5⋮d\\3n+7⋮d\end{cases}}\Rightarrow\hept{\begin{cases}3\left(2n+5\right)⋮d\\2\left(3n+7\right)⋮d\end{cases}}\Rightarrow\hept{\begin{cases}6n+15⋮d\\6n+14⋮d\end{cases}}\Rightarrow\left(6n+15\right)-\left(6n+14\right)⋮d\)
=> \(1⋮d\Rightarrow d=1\)
Chứng tỏ phân số 2n+1/3n+2 là phân số tối giản với mọi n thuộc Z
Gọi d là ƯCLN của 2n + 1 và 3 n + 2
Ta có
2n+1 chia hết cho d => 3 ( 2n+1) chia hết cho d => 6n +3 chia hết cho d (1)
3n + 1 chia hết cho d => 2(3n+1) chia hết cho d => 6n + 4 Chia hết cho d ( 2 )
Từ (1), (2)
=> 6n+4 - 6n - 3 chia hết cho d
=> 1 chia hết cho d
=> d = 1
=> ƯCLN ( 2n + 1 : 3n + 2 ) = 1
=> Phân số 2n+1/3n+2 tối giản với mọi n thuộc Z
Phương pháp chứng minh 1 p/s tối giản là :
Chứng minh ƯCLN của tử và mẫu = 1
Còn cách làm : Tự làm
Gọi d= ƯCLN (2n+1, 3n+2)(d thuộc N*)
\(\Rightarrow\)2n+1\(⋮\)d
3n+2\(⋮\)d
\(\Rightarrow\)(2n+1).3\(⋮\)d
(3n+2).2\(⋮\)d
\(\Rightarrow\)6n+3\(⋮\)d
6n+4\(⋮\)d
\(\Rightarrow\)(6n+4)-(6n+3)\(⋮\)d
\(\Rightarrow\)1\(⋮\)d
\(\Rightarrow\)d=1
\(\Rightarrow\)2n+1/3n+2 là phân số tối giản.
\(\Rightarrow\)Đpcm.
Chứng tỏ rằng với mọi số nguyên n phân số 3n-5/ 3-2n là phân số tối giản
e gio biet lam chua ha cu
ki ten
thuc
dinh trong thuc
chứng tỏ rằng với mọi số nguyên n , phân số 3n-5 / 3-2n là phân số tối giản
Chứng tỏ rằng phân số \(\frac{2n+1}{3n+2}\) là phân số tối giản với mọi giá trị của n \(n\in Z\)
đặc d = 2n+1 ; 3n+2 với n thuộc Z
suy ra d / 2(3n+2)-3(2n+1)
suy rra d=1
vậy 2n+1/3n+1 là phân số tối giản
giả sử 2n+1/3n+2 la phan so toi gian (1)
ta thay 2 va 3 la 2 so nguyen to cung nhau (2)
tu (1) va (2)=>3(2n+1)/2(3n+2) cung la phan so toi gian
hay 6n+3/6n+4 cung la phan so toi gian
ta thay (6n+3;6n+4)=1=> dieu gia su la dung
Luu y :cai nay (...)la UCNN NHE
Chứng tỏ rằng mọi phân số có dạng :
\(\dfrac{2n+3}{3n+5}\) = ( n ∈ N ) đều là phân số tối giản .
Giải:
Gọi ƯCLN (2n+3;3n+5)=d
Ta có:
2n+3:d =>3. (2n+3):d
3n+5:d=> 2. (3n+5):d
=> [3. (2n+3) - 2.(3n+5)]:d
=>(6n+9 - 6n-10): d
=> -1:d
=> d={1,-1}
Tick mình nha
Bài 1 : Chứng tỏ rằng với mọi số nguyên n, phân số \(\frac{3n-5}{3-2n}\)là phân số tối giản.
Bài 2 : Cho n \(\in\)N*. Biết n - 10, n+10, n+ 60 đều là các số nguyên tố. Chứng minh rằng n + 90 cũng là số nguyên tố.
Gọi (n^3+2n ; n^4+3n^2+1) là d => n^3+2n chia hết cho d và n^4+3n^2+1 chia hết cho d. =>n(n^3+2n) chia hết cho d hay n^4+2n^2 chia hết cho d. do đó (n^4+3n^2+1) - (n^4+2n^2) chia hết chod hay n^2 +1 chia hết cho d (1). => (n^2+1)(n^2+1) chia hết cho d hay n^4+2n^2+1 chia hết cho d. => (n^4+3n^2+1) ...
Bài 1 :
Ta có :
\(\frac{3n-5}{3-2n}=\frac{3n-5}{-\left(2n-3\right)}\)
Gọi \(ƯCLN\left(3n-5;3-2n\right)=d\)
\(\Rightarrow\)\(\hept{\begin{cases}3n-5⋮d\\-\left(2n-3\right)⋮d\end{cases}\Rightarrow\hept{\begin{cases}2\left(3n-5\right)⋮d\\-3\left(2n-3\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}6n-10⋮d\\-6n+9⋮d\end{cases}}}\)
\(\Rightarrow\)\(\left(6n-10\right)+\left(-6n+9\right)⋮d\)
\(\Rightarrow\)\(\left(6n-6n\right)\left(-10+9\right)⋮d\)
\(\Rightarrow\)\(\left(-1\right)⋮d\)
\(\Rightarrow\)\(d\inƯ\left(1\right)\)
Mà \(Ư\left(1\right)=\left\{1;-1\right\}\)
\(\Rightarrow\)\(ƯCLN\left(3n-5;3-2n\right)=\left\{1;-1\right\}\)
Vậy \(\frac{3n-5}{3-2n}\) là phân số tối giản với mọi số nguyên n
Chúc bạn học tốt ~
Chứng tỏ rằng phân sau là phân số tối giản với mọi n thuộc N :n^3+2n/n^4+3n^2+1
Chứng tỏ rằng A=\(\frac{2n+3}{3n+5}\)với n thuộc Z là phân số tối giản
Gọi ƯCLN(2n+3;3n+5)=d
Ta có:
2n+3 chia hết cho d=> 3(2n+3) chia hết cho d=>6n+9 chia hết cho d
3n+5 chia hết cho d=>2(3n+5) chia hét cho d=>6n+10 chia hết cho d
=>(6n+10)-(6n+9) chia hết cho d
=> 6n+10-6n-9 chia hết cho d
=> 1 chia hết cho d
mà d lớn nhất
=> d=1 (ĐPCM) ( vì d=1 nên 2n+3/3n+5=1, là phân số tối giản)
goi ưcln(2n+3;3n+5)=5
2n+3 chia het cho d
=.>6n+9 chia het cho d
3n+5chia het cho d
=>6n+10 chia het cho d
=>1 chia het cho d
=>thuoc Ư(1)
=>d=1