Tìm số nguyên tố có dạng n(n+1)(n+2)/6
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Bài 1 ( Dạng 1): Cho p là số nguyên tố và 2 số 8p -1; 8p + 1 là số nguyên tố. Hỏi số thứ 3 là số nguyên tố hay hợp số
Bài 2 ( Dạng 1): Tìm số tự nhiên k để dãy k + 1, k + 2,…,k + 10 chứa nhiều số nguyên tố nhất
Bài 3 ( Dạng 2): Tìm số nhỏ nhất A có 6 ước; 9 ước
Bài 4 ( Dạng 2): Chứng minh rằng: (p – 1)! chia hết cho p nếu p là hợp số, không chia hết cho p nếu p là số nguyên tố.Bài 5 ( Dạng 2): Cho 2m – 1 là số nguyên tố. Chứng minh rằng m cũng là số nguyên tố
Bài 6 ( Dạng 2): Chứng minh rằng: 2002! – 1 có mọi ước số nguyên tố lớn hơn 2002
Bài 7 ( Dạng 3): Tìm n là số tự nhiên khác 0 để:
a) n4+ 4 là số nguyên tố
b) n2003+n2002+1 là số nguyên tố
Bài 8 ( Dạng 3): Cho a,b,c,d thuộc N* thỏa mãn ab = cd. Chứng tỏ rằng số A = an+bn+cn+dn là hợp số với mọi số tự nhiên n
Bài 9 ( Dạng 4): Tìm số nguyên tố p sao cho 2p+1 chia hết cho p
Bài 10 ( Dạng 4): Cho p là số nguyên tố lớn hơn 2. Chứng tỏ rằng có vô số số tự nhiên n thỏa mãn n.2n -1 chia hết cho p
K MIK NHA BN !!!!!!
B1 :Ta biết bình phương của một số nguyên chia cho 3 dư 0 hoặc 1
đơn giản vì n chia 3 dư 0 hoặc ±1 => n² chia 3 dư 0 hoặc 1
* nếu p = 3 => 8p+1 = 8.3 + 1 = 25 là hợp số
* xét p nguyên tố khác 3 => 8p không chia hết cho 3
=> (8p)² chia 3 dư 1 => (8p)² - 1 chia hết cho 3
=> (8p-1)(8p+1) chia hết cho 3
Vì gt có 1 số là nguyên tố nến số còn lại chia hết cho 3, rõ ràng không có số nào là 3 => số này là hợp số
B2:Xét k = 0 thì được dãy số {1 ; 2 ; 10} có 1 số nguyên tố (1)
* Xét k = 1
ta được dãy số {2 ; 3 ; 11} có 3 số nguyên tố (2)
* Xét k lẻ mà k > 1
Vì k lẻ nên k + 1 > 2 và k + 1 chẵn
=> k + 1 là hợp số
=> Dãy số không có nhiều hơn 2 số nguyên tố (3)
* Xét k chẵn , khi đó k >= 2
Suy ra k + 2; k + 10 đều lớn hơn 2 và đều là các số chẵn
=> k + 2 và k + 10 là hợp số
=> Dãy số không có nhiều hơn 1 số nguyên tố (4)
So sánh các kết quả (1)(2)(3)(4), ta kết luận với k = 1 thì dãy có nhiều số nguyên tố nhất
B3:Số 36=(2^2).(3^2)
Số này có 9 ước là:1;2;3;4;6;9;12;18;36
Số tự nhiên nhỏ nhất có 6 ước là số 12.
Cho tập hợp ước của 12 là B.
B={1;2;3;4;6;12}
K MIK NHA BN !!!!!!
Bài 1 ( Dạng 1): Cho p là số nguyên tố và 2 số 8p -1; 8p + 1 là số nguyên tố. Hỏi số thứ 3 là số nguyên tố hay hợp số
Bài 2 ( Dạng 1): Tìm số tự nhiên k để dãy k + 1, k + 2,…,k + 10 chứa nhiều số nguyên tố nhất
Bài 3 ( Dạng 2): Tìm số nhỏ nhất A có 6 ước; 9 ước
Bài 4 ( Dạng 2): Chứng minh rằng: (p – 1)! chia hết cho p nếu p là hợp số, không chia hết cho p nếu p là số nguyên tố.Bài 5 ( Dạng 2): Cho 2m – 1 là số nguyên tố. Chứng minh rằng m cũng là số nguyên tố
Bài 6 ( Dạng 2): Chứng minh rằng: 2002! – 1 có mọi ước số nguyên tố lớn hơn 2002 ( Đây là bài của chịnhunglth đó ạ)
Bài 7 ( Dạng 3): Tìm n là số tự nhiên khác 0 để:
a) n4+ 4 là số nguyên tố
b) n2003+n2002+1 là số nguyên tố
Bài 8 ( Dạng 3): Cho a,b,c,d thuộc N* thỏa mãn ab = cd. Chứng tỏ rằng số A = an+bn+cn+dn là hợp số với mọi số tự nhiên n
Bài 9 ( Dạng 4): Tìm số nguyên tố p sao cho 2p+1 chia hết cho p
Bài 10 ( Dạng 4): Cho p là số nguyên tố lớn hơn 2. Chứng tỏ rằng có vô số số tự nhiên n thỏa mãn n.2n -1 chia hết cho p
Các bạn có thể trả lời vài câu hỏi cũng được.Bạn nào trả lời được nhiều mình sẽ ủng hộ cho nha
😑😐🙌🏿👐🏿🤲🏿🤜🏿🤛🏿✊🏿👊🏿👋🏿🤚🏿👉🏿👈🏿🖖🏿🤟🏿🤘🏿✌🏿🤞🏿🤙🏿👌🏿☝🏿👆🏿👇🏿🖕🏿🙏🏿
tìm tất cả các số nguyên tố p có dạng n(n+1)(n+2):6+1
Hãy chứng tỏ rằng với mọi số nguyên tố n khác 0 ttù häc:
a, Mọi số nguyên tố lớn hơn 2 đều có dạng 4.n+1hoặc 4.n+3
b, Mọi số nguyên tố lớn hơn 3 đều có dạng 6.n+1 hoặc 6.n+5
Tìm các số nguyên tố P có dạng P=\(\frac{n.\left(n+1\right).\left(n+2\right)}{6}\)-1
\(n\left(n+1\right)\left(n+2\right)⋮6\)
vì n(n+1)(n+2) là ba số tự nhiên liên tiếp nên chia hết cho 2 và cho 3 suy ra chia hết cho 6
để P là số nguyên tố =>n(n+1)(n+2) phải là 3 hoặc các số chẵn lớn hơn 2
Tìm tất cả những số nguyên tố p có dạng: \(\frac{n\left(n+1\right)\left(n+2\right)}{6}+1\left(n\ge1\right)\)
\(\frac{n\left(n+1\right)\left(n+2\right)}{6}+1=\frac{n\left(n+1\right)\left(n+2\right)}{6}+\frac{6}{6}=\frac{n\left(n+1\right)\left(n+2\right)+6}{6}\)
Nếu n=1 thì ta có: [1(1+1)(1+2)+6]/6=[1*2*3+6]/6=12/6=2(là số nguyên tố)
Nếu n=2 thì ta có: [2(2+1)(2+2)+6]/6=[2*3*4+6]/6=24/6=4(ko phải là số nguyên tố)
Nếu n=3 thì ta có: [3(3+1)(3+2)+6]/6=[3*4*5+6]/6=11(là số nguyên tố)
Nếu n=4 thì ta có: [4*5*6+6]/6=120/6=20(ko phải là số nguyên tố)
cứ như vậy tiếp dần thì ta chỉ có n=1 thì p mới là số nguyên tố, thì p=2
Vậy tất cả các số nguyên tố p cần tìm chỉ có thể p=2
cái này mk ko chắc lắm đâu, chưa làm dạng này bao giờ
Thạch ơi, cái bài này mk giải như thế đúng k?
quên, mk sửa lại 1 tí nhé
cứ như vậy tiếp dần thì ta chỉ có n=1;4 thì p mới là số nguyên tố, thì p=2;11
Vậy tất cả các số nguyên tố p cần tìm chỉ có thể p=2;11
Tìm tất cả các số nguyên tố p có dạng \(\dfrac{n\left(n+1\right)}{2}-1\left(n\ge1\right)\)
TH1: \(n\) chẵn \(\Rightarrow n=2k\) (với \(k\in N\)*)
\(p=\dfrac{2k\left(2k+1\right)}{2}-1=2k^2+k-1=\left(k+1\right)\left(2k-1\right)\)
Do \(k+1\ge2>1\) nên p nguyên tố khi và chỉ khi: \(\left\{{}\begin{matrix}2k-1=1\\k+1\text{ là số nguyên tố}\end{matrix}\right.\)
\(2k-1=1\Rightarrow k=1\)
Khi đó \(p=2\) (thỏa mãn)
TH2: \(n\) lẻ \(\Rightarrow n=2k+1\) (với \(k\in N\))
\(p=\dfrac{\left(2k+1\right)\left(2k+2\right)}{2}-1=\left(2k+1\right)\left(k+1\right)-1=2k^2+3k=k\left(2k+3\right)\)
Do \(2k+3\ge3>1\) nên p là nguyên tố khi và chỉ khi \(\left\{{}\begin{matrix}k=1\\2k+3\text{ là số nguyên tố}\end{matrix}\right.\)
Khi \(k=1\Rightarrow p=5\) là số nguyên tố (thỏa mãn)
Vậy \(p=\left\{2;5\right\}\)
tìm tất cả số nguyên tố p có dạng \(p\dfrac{\left(n-1\right)\left(n+2\right)}{2}\)
Bài 9: Chứng minh rằng:
a) Mọi số nguyên tố lớn hơn 2 đều có dạng 4n±1,nϵN∗
b) Mọi số nguyên tố lớn hơn 3 đều có dạng 6n±1,nϵN∗