tính [100/3]+[100/3^2]+[100/3^3]+[100/3^4]ư
\(=\left(\dfrac{1}{100}-\dfrac{1}{1^2}\right)\left(\dfrac{1}{100}-\dfrac{1}{4}\right)\cdot...\cdot\left(\dfrac{1}{100}-\dfrac{1}{10^2}\right)\cdot...\cdot\left(\dfrac{1}{100}-\dfrac{1}{400}\right)\)
\(=\left(\dfrac{1}{100}-\dfrac{1}{100}\right)\cdot\left(\dfrac{1}{100}-1\right)\cdot...\cdot\left(\dfrac{1}{100}-\dfrac{1}{400}\right)\)
\(=0\cdot\left(\dfrac{1}{100}-1\right)\cdot...\cdot\left(\dfrac{1}{100}-\dfrac{1}{400}\right)=0\)
Tính:[100/3]+[100/3^2]+[100/3^3]+[100/3^4]
[1/100-1^2]ư.[1/100-(1/2)^2].[1/100-(1/3)^2]...[1/100-(1/20)^2]
Giải đầy đủ cho mik nha
Tính tổng 100-(1+1/2+1/3+1/4+...+1/100)/1/2+2/3+3/4+....+99/100
A = \(\dfrac{100-(1+\dfrac{1}{2}+\dfrac{1}{3}+....+\dfrac{1}{100})}{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{99}{100}}\)
Xét các mẫu số của dãy phân số : \(\dfrac{1}{1};\dfrac{1}{2};....;\dfrac{1}{100}\)
ta có dãy số: 1; 2; ....;100
Dãy số trên có số số hạng là: ( 100 - 1) : 1 + 1 = 100 (số)
Tách 100 thành tổng của 100 số 1 rồi nhóm lần lượt 1 với từng phân số thuộc dãy phân số trên khi đó ta có:
A = \(\dfrac{100-(1+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{100})}{\dfrac{1}{2}+\dfrac{2}{3}+\dfrac{3}{4}+.....+\dfrac{99}{100}}\)
A = \(\dfrac{(1-1)+(1-\dfrac{1}{2})+(1-\dfrac{1}{3})+....+(1-\dfrac{1}{100})}{\dfrac{1}{2}+\dfrac{2}{3}+\dfrac{3}{4}+.....+\dfrac{99}{100}}\)
A = \(\dfrac{\dfrac{1}{2}+\dfrac{2}{3}+\dfrac{3}{4}+...+\dfrac{99}{100}}{\dfrac{1}{2}+\dfrac{2}{3}+\dfrac{3}{4}+....+\dfrac{99}{100}}\)
A = 1
Cho A = 100-99+98-97+...+4-3+2-1
a) Tính A
b) Tìm (Ư) A
tính 1/3 - 2/3^2 + 3/3^3 - 4/3^4..... + 99/3^99 - 100/3^100
Tính:\(\left[\frac{100}{3}\right]+\left[\frac{100}{3^2}\right]+\left[\frac{100}{3^3}\right]+\left[\frac{100}{3^4}\right]\)
\(3A=100+\frac{100}{3}+\frac{100}{3^2}+\frac{100}{3^3}\)
\(3A-A=2A=100-\frac{100}{3^4}\)
\(A=50-\frac{\frac{100}{3^4}}{2}\)
\(\text{Đặt }A=\frac{100}{3}+\frac{100}{3^2}+\frac{100}{3^3}+\frac{100}{3^4}\)
\(3A=100+\frac{100}{3}+\frac{100}{3^2}+\frac{100}{3^3}\)
\(3A-A=2A=100-\frac{100}{3^4}\)
\(2A=100-\frac{100}{81}=\frac{8000}{81}\)
\(A=\frac{8000}{81}\text{ : }2\)
\(A=\frac{4000}{81}\)
Đặt \(A=\frac{100}{3}+\frac{100}{3^2}+\frac{100}{3^3}+\frac{100}{3^4}\)
\(\Rightarrow A=100\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}\right)\)
Đặt \(B=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}\)
\(\Rightarrow3B=1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}\)
\(\Rightarrow3B-B=1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}\)\(-\frac{1}{3}-\frac{1}{3^2}-\frac{1}{3^3}-\frac{1}{3^4}\)
\(\Rightarrow2B=1-\frac{1}{3^4}\)
\(\Rightarrow B=\frac{1}{2}\left(1-\frac{1}{3^4}\right)\)
\(\Rightarrow B=\frac{1}{2}.\frac{80}{81}=\frac{40}{81}\)
\(\Rightarrow A=100.\frac{80}{81}=\frac{8000}{81}\)
Tính:
a.[100/3]+[100/3^2]+[100/3^3]+[100/3^4]
b.[50/2]+[50/2^2]+[50/2^3]+[50/2^4]+[50/2^5]
c.[x]+[x+2/3]+[x+4/3]+[x+7/3]+[x+10/3] với x=-2,7
Tính C=1/2-(1/3+2/3)+(1/4+2/4+3/4)-(1/5+2/5+3/5+4/5)+...+(1/100+2/100+...+99/100)