Những câu hỏi liên quan
NH
Xem chi tiết
LV
21 tháng 8 2016 lúc 7:34

Đặt \(A=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{2015.2017}\), ta có:

\(A=\frac{1}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{2015.2017}\right)\)

\(=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{2015}-\frac{1}{2017}\right)\)

\(=\frac{1}{2}.\left(1-\frac{1}{2017}\right)\)

\(=\frac{1}{2}.\frac{2016}{2017}=\frac{1008}{2017}\)

Bình luận (0)
NH
21 tháng 8 2016 lúc 7:31

\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+....+\frac{1}{2015.2017}\)

\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+....+\frac{1}{2015}-\frac{1}{2017}+\frac{1}{2017}\)

\(=1-\frac{1}{2017}\)

\(=\frac{2016}{2017}\)

mk đầu tiên đấy

Bình luận (0)
KY
21 tháng 8 2016 lúc 7:31

1008/2017

Bình luận (0)
TT
Xem chi tiết
NV
Xem chi tiết
TT
Xem chi tiết
DY
Xem chi tiết
NT
22 tháng 4 2023 lúc 22:08

=1-1/3+1/3-1/5+...+1/2015-1/2017

=1-1/2017

=2016/2017

Bình luận (0)
NV
Xem chi tiết
NL
7 tháng 2 2020 lúc 20:05

Lời giải:

Xét tổng quát:

1+1k(k+2)=k(k+2)+1k(k+2)=(k+1)2k(k+2)1+1k(k+2)=k(k+2)+1k(k+2)=(k+1)2k(k+2)

Thay k=1,2,....,2015k=1,2,....,2015 ta có:

1+11.3=221.31+11.3=221.3

1+12.4=322.41+12.4=322.4

1+13.5=423.51+13.5=423.5

1+14.6=524.61+14.6=524.6

.............

1+12015.2017=201622015.20171+12015.2017=201622015.2017

Nhân theo vế:

⇒A=12(1+11.3)(1+12.4)(1+13.5)....(1+12015.2017)⇒A=12(1+11.3)(1+12.4)(1+13.5)....(1+12015.2017)

=12.221.3.322.4.423.5.524.6....201622015.2017=12.221.3.322.4.423.5.524.6....201622015.2017

=(1.2.3...2016)2(1.2.3...2015)(2.3.4...2017)=(1.2.3...2016)(2.3....2016)(1.2.3...2015)(2.3.4...2017)=2016.12017=20162017

Bình luận (0)
 Khách vãng lai đã xóa
NT
Xem chi tiết
TQ
Xem chi tiết
SK
10 tháng 8 2016 lúc 18:31

\(\frac{2016}{1.3}+\frac{2016}{3.5}+\frac{2016}{5.7}+....+\frac{2016}{2015.2017}\)

\(=1008.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{2015.2017}\right)\)

\(=1008.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+....+\frac{1}{2015}-\frac{1}{2017}\right)\)

\(=1008.\left(1-\frac{1}{2017}\right)\)

\(=1008.\frac{2016}{2017}\)

Bình luận (0)
VK
10 tháng 8 2016 lúc 18:34

147852.

Bình luận (0)
DH
Xem chi tiết
TP
15 tháng 8 2017 lúc 17:53

Ta có:

\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2017.2018}\)

\(\Rightarrow A=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2017}-\frac{1}{2018}\)

\(\Rightarrow A=\frac{1}{1}-\frac{1}{2018}=\frac{2017}{2018}\)

\(B=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{2015.2017}\)

\(\Rightarrow B=\frac{1}{2}.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2015}-\frac{1}{2017}\right)\)

\(\Rightarrow B=\frac{1}{2}.\left(\frac{1}{1}-\frac{1}{2017}\right)=\frac{1}{2}.\frac{2016}{2017}\)

\(\Rightarrow B=\frac{1008}{2017}\)

Bình luận (0)