Những câu hỏi liên quan
H24
Xem chi tiết
H24
Xem chi tiết
H24
11 tháng 7 2021 lúc 15:30

Ta có a+b và a-b là số hữu tỉ 

suy ra (a+b) + (a-b) = 2a là số hữu tỉ 

Suy ra a là số hữu tỉ

Tương tự , b cũng là số hữu tỉ 

Bình luận (0)
NT
12 tháng 7 2021 lúc 0:12

a,b là các số hữu tỷ

Bình luận (0)
NV
Xem chi tiết
KT
1 tháng 8 2018 lúc 16:24

\(\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)\)

\(=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2.\frac{a+b+c}{abc}\)

\(=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\)    (do a+b+c = 0)

=>  \(B=\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}}=\sqrt{ \left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2}=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)

=>   đpcm

Bình luận (0)
TN
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
TH
Xem chi tiết
JP
Xem chi tiết
NQ
24 tháng 8 2021 lúc 0:01

ta có : 

a. \(a=\frac{\left(a+b\right)+\left(a-b\right)}{2}\) nên a chắc chắn là số hữu tỉ và do đó b cũng là số hữu tỉ

b. \(a=\frac{2\left(2a+b\right)+\left(3a-2b\right)}{7}\) nên a chắc chắn là số hữu tỉ và do đó b cũng là số hữu tỉ

Bình luận (0)
 Khách vãng lai đã xóa