Những câu hỏi liên quan
TD
Xem chi tiết
TL
8 tháng 8 2016 lúc 13:40

\(x^2+y^2+z^2=2xyz\)

\(\Leftrightarrow\left(x^2-2xy+y^2\right)+z^2=0\)

\(\Leftrightarrow\left(x-y\right)^2+x^2=0\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}x-y=0\\z=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=y\\z=0\end{array}\right.\)

Bình luận (0)
HN
8 tháng 8 2016 lúc 20:02

2xyz chứ có phải 2xy đâu :)

Bình luận (0)
ND
Xem chi tiết
DH
4 tháng 7 2021 lúc 15:10

Do vai trò của \(x,y,z\)như nhau nên ta giả sử \(x\ge y\ge z\ge1\).

Khi đó: \(2xyz=16+x+y+z\le16+3x\Rightarrow yz\le\frac{19}{2}\Rightarrow z^2\le\frac{19}{2}\Rightarrow z\le3\).

Với \(z=1\)\(2xy=17+x+y\Leftrightarrow\left(2x-1\right)\left(2y-1\right)=35=1.35=5.7\)

suy ra \(\hept{\begin{cases}2x-1=35\\2y-1=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=18\\y=1\end{cases}}\)hoặc \(\hept{\begin{cases}2x-1=7\\2y-1=5\end{cases}}\Leftrightarrow\hept{\begin{cases}x=4\\y=3\end{cases}}\).

Với \(z=2\)\(4xy=18+x+y\Leftrightarrow\left(4x-1\right)\left(4y-1\right)=73=1.73\)

suy ra \(\hept{\begin{cases}4x-1=73\\4y-1=1\end{cases}}\)(loại vì không có nghiệm nguyên)

Với \(z=3\):  \(6xy=19+x+y\Leftrightarrow\left(6x-1\right)\left(6y-1\right)=115=1.115=5.23\)

suy ra \(\hept{\begin{cases}6x-1=115\\6y-1=1\end{cases}}\)không có nghiệm nguyên hoặc \(\hept{\begin{cases}6x-1=23\\6y-1=5\end{cases}}\Leftrightarrow\hept{\begin{cases}x=4\\y=1\end{cases}}\)(loại vì \(y< z\))

Vậy phương trình đã cho có nghiệm \(\left(18,1,1\right),\left(4,3,1\right)\)và các hoán vị. 

Bình luận (0)
 Khách vãng lai đã xóa
HM
Xem chi tiết
NH
Xem chi tiết
PB
24 tháng 2 2023 lúc 19:44

Bình luận (0)
NA
Xem chi tiết
HN
Xem chi tiết
LD
24 tháng 4 2016 lúc 17:32

Câu hỏi không rõ nhé bạn. bạn hỏi đầy đủ hơn

Bình luận (0)
TL
Xem chi tiết
H24
Xem chi tiết
FY
24 tháng 5 2017 lúc 10:53

Ta gọi phương trinh của x+Y=Z = XYZ LÀ (2) .Do vai trò bình đẳng của x,y,z trong phương trình, trước hết ta xét x bé hơn hoặc = y < hoặc = z

VÌ x,y,z nguyên dương nên xyz khác 0 , do x , hoặc = y ,học = z => xyz= x+y+z < hoặc = 3z => xy <3 => x thuộc {1;2;3}

Nếu xy=1 => x=y=1 . Thay vào (2) ta có : 2+z =z ( vô lý)

nẾU XY=2 , Do x <  hoặc = y nên x=1,y=2 . tHAY VÀO (2) ta có ; z=3

NÊú xy =3 , do x , hoặc = y nên x=1, y=3. Thay vào (2) ta có , z=2

Vậy nghiệm nguyên dương của phương trình (2) là các hoán vị của (1;2;3) 

TK MK NHA!!

Bình luận (0)
FY
24 tháng 5 2017 lúc 10:55

MK LỚP 6 MÀ LÀM ĐƯỢC BÀI LỚP 7 ĐẤY

Bình luận (0)
NT
Xem chi tiết
vu
14 tháng 8 2017 lúc 20:19

vế phải bạn ơi phương trình thì phải có dấu bằng chứ

Bình luận (0)